Queries on sum of odd number digit sums of all the factors of a number
Given Q queries. Each query contain a positive integer n. The task is to output the sum of sum of odd number digit contained in all the divisors of n.
Examples :
Input : Q = 2, n1 = 10, n2 = 36
Output : 7 18
For Query1,
Divisors of 10 are 1, 2, 5, 10.
Sum of odd digits in 1 is 1, in 2 is 0, in 5 is 5, in 10 is 1.
So, sum became 7.
For Query 2,
Divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.
Sum of odd digits in 1 is 1, in 2 is 0, in 3 is 3, in 4 is 0,
in 6 is 0, in 9 is 9, in 12 is 1, in 18 is 1, in 36 is 3.
So, sum became 18.
The idea is to precompute the sum of odd number digit of all the numbers. Also, we can you use the sum of odd number digit of the previous number to compute the sum of odd number digit of the current number.
For example, to compute the sum of odd number digit of “123”, we can use the sum of odd number digit of “12” and “3”. Therefore, the sum of odd digit of “123” = sum of odd digit of “12” + add the last digit if it is odd (i.e 3).
Now, to find the sum of the sum of odd number digit of the factors, we can you use the jump phenomenon of Sieve of Eratosthenes. So, for all possible factors, add their contribution to its multiples.
For example, for 1 as the factor, add 1 (because 1 have only 1 odd digit) to all of its multiple.
for 2 as the factor, add 0 to all the multiples of 2 i.e 2, 4, 8, …
for 3 as the factor, add 1 to all the multiples of 3 i.e 3, 6, 9, …..
Below is the implementation of this approach:
C++
// CPP Program to answer queries on sum // of sum of odd number digits of all // the factors of a number #include <bits/stdc++.h> using namespace std; #define N 1000005 // finding sum of odd digit number in each integer. void sumOddDigit( int digitSum[]) { // for each number for ( int i = 1; i < N; i++) { // using previous number sum, finding // the current number num of odd digit // also, adding last digit if it is odd. digitSum[i] = digitSum[i / 10] + (i & 1) * (i % 10); } } // finding sum of sum of odd digit of all // the factors of a number. void sumFactor( int digitSum[], int factorDigitSum[]) { // for each possible factor for ( int i = 1; i < N; i++) { for ( int j = i; j < N; j += i) { // adding the contribution. factorDigitSum[j] += digitSum[i]; } } } // Wrapper function void wrapper( int q, int n[]) { int digitSum[N]; int factorDigitSum[N]; sumOddDigit(digitSum); sumFactor(digitSum, factorDigitSum); for ( int i = 0; i < q; i++) cout << factorDigitSum[n[i]] << " " ; } // Driven Program int main() { int q = 2; int n[] = { 10, 36 }; wrapper(q, n); return 0; } |
Java
// Java Program to answer queries // on sum of sum of odd number // digits of all the factors of // a number class GFG { static int N = 1000005 ; // finding sum of odd digit // number in each integer. static void sumOddDigit( int digitSum[]) { // for each number for ( int i = 1 ; i < N; i++) { // using previous number sum, // finding the current number // num of odd digit also, // adding last digit if it // is odd. digitSum[i] = digitSum[i / 10 ] + (i & 1 ) * (i % 10 ); } } // finding sum of sum of odd digit // of all the factors of a number. static void sumFactor( int digitSum[], int factorDigitSum[]) { // for each possible factor for ( int i = 1 ; i < N; i++) { for ( int j = i; j < N; j += i) { // adding the contribution. factorDigitSum[j] += digitSum[i]; } } } // Wrapper function static void wrapper( int q, int n[]) { int digitSum[] = new int [N]; int factorDigitSum[] = new int [N]; sumOddDigit(digitSum); sumFactor(digitSum, factorDigitSum); for ( int i = 0 ; i < q; i++) System.out.print(factorDigitSum[n[i]] + " " ); } // Driver Code public static void main(String args[]) { int q = 2 ; int n[] = new int []{ 10 , 36 }; wrapper(q, n); } } // This code is contributed by Sam007 |
Python3
# Python Program to answer queries # on sum of sum of odd number # digits of all the factors # of a number N = 100 digitSum = [ 0 ] * N factorDigitSum = [ 0 ] * N # finding sum of odd digit # number in each integer. def sumOddDigit() : global N,digitSum,factorDigitSum # for each number for i in range ( 1 , N) : # using previous number # sum, finding the current # number num of odd digit # also, adding last digit # if it is odd. digitSum[i] = (digitSum[ int (i / 10 )] + int (i & 1 ) * (i % 10 )) # finding sum of sum of # odd digit of all the # factors of a number. def sumFactor() : global N,digitSum,factorDigitSum j = 0 # for each possible factor for i in range ( 1 , N) : j = i while (j < N) : # adding the contribution. factorDigitSum[j] = (factorDigitSum[j] + digitSum[i]) j = j + i # Wrapper def def wrapper(q, n) : global N,digitSum,factorDigitSum for i in range ( 0 , N) : digitSum[i] = 0 factorDigitSum[i] = 0 sumOddDigit() sumFactor() for i in range ( 0 , q) : print ( "{} " . format (factorDigitSum[n[i]]), end = "") # Driver Code q = 2 n = [ 10 , 36 ] wrapper(q, n) # This code is contributed by # Manish Shaw(manishshaw1) |
C#
// C# Program to answer queries on sum // of sum of odd number digits of all // the factors of a number using System; class GFG { static int N = 1000005; // finding sum of odd digit number in // each integer. static void sumOddDigit( int []digitSum) { // for each number for ( int i = 1; i < N; i++) { // using previous number sum, // finding the current number // num of odd digit also, // adding last digit if it // is odd. digitSum[i] = digitSum[i / 10] + (i & 1) * (i % 10); } } // finding sum of sum of odd digit // of all the factors of a number. static void sumFactor( int []digitSum, int []factorDigitSum) { // for each possible factor for ( int i = 1; i < N; i++) { for ( int j = i; j < N; j += i) { // adding the contribution. factorDigitSum[j] += digitSum[i]; } } } // Wrapper function static void wrapper( int q, int []n) { int []digitSum = new int [N]; int []factorDigitSum = new int [N]; sumOddDigit(digitSum); sumFactor(digitSum, factorDigitSum); for ( int i = 0; i < q; i++) Console.Write(factorDigitSum[n[i]] + " " ); } // Driver code public static void Main() { int q = 2; int []n = new int []{ 10, 36 }; wrapper(q, n); } } // This code is contributed by Sam007. |
PHP
<?php // PHP Program to answer queries // on sum of sum of odd number // digits of all the factors // of a number $N = 1000005; // finding sum of odd digit // number in each integer. function sumOddDigit(& $digitSum ) { global $N ; // for each number for ( $i = 1; $i < $N ; $i ++) { // using previous number // sum, finding the current // number num of odd digit // also, adding last digit // if it is odd. $digitSum [ $i ] = $digitSum [ intval ( $i / 10)] + intval ( $i & 1) * ( $i % 10); } } // finding sum of sum of // odd digit of all the // factors of a number. function sumFactor( $digitSum , & $factorDigitSum ) { global $N ; // for each possible factor for ( $i = 1; $i < $N ; $i ++) { for ( $j = $i ; $j < $N ; $j += $i ) { // adding the contribution. $factorDigitSum [ $j ] += $digitSum [ $i ]; } } } // Wrapper function function wrapper( $q , $n ) { global $N ; $digitSum = array (); $factorDigitSum = array (); for ( $i = 0; $i < $N ; $i ++) { $digitSum [ $i ] = 0; $factorDigitSum [ $i ] = 0; } sumOddDigit( $digitSum ); sumFactor( $digitSum , $factorDigitSum ); for ( $i = 0; $i < $q ; $i ++) echo ( $factorDigitSum [ $n [ $i ]]. " " ); } // Driver Code $q = 2; $n = array ( 10, 36 ); wrapper( $q , $n ); // This code is contributed by // Manish Shaw(manishshaw1) ?> |
7 18
Recommended Posts:
- Queries to find whether a number has exactly four distinct factors or not
- Queries for the smallest and the largest prime number of given digit
- Find number of factors of N when location of its two factors whose product is N is given
- Number which has the maximum number of distinct prime factors in the range M to N
- Super Ugly Number (Number whose prime factors are in given set)
- Number with maximum number of prime factors
- Count of Numbers in Range where first digit is equal to last digit of the number
- Number of times a number can be replaced by the sum of its digits until it only contains one digit
- Find the remainder when First digit of a number is divided by its Last digit
- Largest number less than N whose each digit is prime number
- Count the number of occurrences of a particular digit in a number
- Largest number less than N with digit sum greater than the digit sum of N
- Sum of all the factors of a number
- Count number of ordered pairs with Even and Odd Sums
- Product of factors of number
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.