Skip to content

# Queries for the difference between the count of composite and prime numbers in a given range

• Last Updated : 11 May, 2021

Given Q queries where each query consists of two positive integers L and R and the task is to find the absolute difference between the count of prime numbers and the count of composite numbers in the range [L, R]
Examples:

Input: queries[][] = {{1, 10}}
Output:

2, 3, 5 and 7 are the only primes in the given range.
So, rest of the 6 integers are composite.
|6 – 4| = 2
Input: queries[][] = {{4, 10}, {5, 30}}
Output:

10

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach:

• Using Sieve of Eratosthenes, generate an array prime[i] such that prime[i] = 1 if i is prime else 0.
• Now update the prime[] array such that prime[i] stores the count of prime numbers which are â‰¤ i.
• For every query, the count of prime numbers in the range [L, R] can be found out by prime[R] – prime[L – 1], and the count of composite numbers will be the count of prime numbers subtracted from the total elements.
• Print the absolute difference between the count of primes and the count of composites found in the previous step.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;``#define MAX 1000000``int` `prime[MAX + 1];` `// Function to update prime[]``// such prime[i] stores the``// count of prime numbers <= i``void` `updatePrimes()``{``    ``// prime[] marks all prime numbers as true``    ``// so prime[i] = 1 if ith number is a prime` `    ``// Initialization``    ``for` `(``int` `i = 2; i <= MAX; i++) {``        ``prime[i] = 1;``    ``}` `    ``// 0 and 1 are not primes``    ``prime[0] = prime[1] = 0;` `    ``// Mark composite numbers as false``    ``// and prime numbers as true``    ``for` `(``int` `i = 2; i * i <= MAX; i++) {``        ``if` `(prime[i] == 1) {``            ``for` `(``int` `j = i * i; j <= MAX; j += i) {``                ``prime[j] = 0;``            ``}``        ``}``    ``}` `    ``// Update prime[] such that``    ``// prime[i] will store the count of``    ``// all the prime numbers <= i``    ``for` `(``int` `i = 1; i <= MAX; i++) {``        ``prime[i] += prime[i - 1];``    ``}``}` `// Function to return the absolute difference``// between the number of primes and the number``// of composite numbers in the range [l, r]``int` `getDifference(``int` `l, ``int` `r)``{` `    ``// Total elements in the range``    ``int` `total = r - l + 1;` `    ``// Count of primes in the range [l, r]``    ``int` `primes = prime[r] - prime[l - 1];` `    ``// Count of composite numbers``    ``// in the range [l, r]``    ``int` `composites = total - primes;` `    ``// Return the sbsolute difference``    ``return` `(``abs``(primes - composites));``}` `// Driver code``int` `main()``{``    ``int` `queries[][2] = { { 1, 10 }, { 5, 30 } };``    ``int` `q = ``sizeof``(queries) / ``sizeof``(queries[0]);` `    ``updatePrimes();` `    ``// Perform queries``    ``for` `(``int` `i = 0; i < q; i++)``        ``cout << getDifference(queries[i][0],``                              ``queries[i][1])``             ``<< endl;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG``{``    ``static` `int` `MAX = ``1000000``;``    ``static` `int` `[]prime = ``new` `int``[MAX + ``1``];` `    ``// Function to update prime[]``    ``// such prime[i] stores the``    ``// count of prime numbers <= i``    ``static` `void` `updatePrimes()``    ``{``        ``// prime[] marks all prime numbers as true``        ``// so prime[i] = 1 if ith number is a prime``    ` `        ``// Initialization``        ``for` `(``int` `i = ``2``; i <= MAX; i++)``        ``{``            ``prime[i] = ``1``;``        ``}``    ` `        ``// 0 and 1 are not primes``        ``prime[``0``] = prime[``1``] = ``0``;``    ` `        ``// Mark composite numbers as false``        ``// and prime numbers as true``        ``for` `(``int` `i = ``2``; i * i <= MAX; i++)``        ``{``            ``if` `(prime[i] == ``1``)``            ``{``                ``for` `(``int` `j = i * i; j <= MAX; j += i)``                ``{``                    ``prime[j] = ``0``;``                ``}``            ``}``        ``}` `        ``// Update prime[] such that``        ``// prime[i] will store the count of``        ``// all the prime numbers <= i``        ``for` `(``int` `i = ``1``; i <= MAX; i++)``        ``{``            ``prime[i] += prime[i - ``1``];``        ``}``    ``}` `    ``// Function to return the absolute difference``    ``// between the number of primes and the number``    ``// of composite numbers in the range [l, r]``    ``static` `int` `getDifference(``int` `l, ``int` `r)``    ``{``    ` `        ``// Total elements in the range``        ``int` `total = r - l + ``1``;``    ` `        ``// Count of primes in the range [l, r]``        ``int` `primes = prime[r] - prime[l - ``1``];``    ` `        ``// Count of composite numbers``        ``// in the range [l, r]``        ``int` `composites = total - primes;``    ` `        ``// Return the sbsolute difference``        ``return` `(Math.abs(primes - composites));``    ``}` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{` `        ``int` `queries[][] = { { ``1``, ``10` `}, { ``5``, ``30` `} };``        ``int` `q = queries.length;``        ``updatePrimes();``        ` `        ``// Perform queries``        ``for` `(``int` `i = ``0``; i < q; i++)``            ``System.out.println (getDifference(queries[i][``0``],``                                ``queries[i][``1``]));` `    ``}``}` `// This code is contributed by jit_t`

## Python3

 `# Python3 implementation of the approach``from` `math ``import` `sqrt` `MAX` `=` `1000000``prime ``=` `[``0``]``*``(``MAX` `+` `1``);` `# Function to update prime[]``# such prime[i] stores the``# count of prime numbers <= i``def` `updatePrimes() :` `    ``# prime[] marks all prime numbers as true``    ``# so prime[i] = 1 if ith number is a prime` `    ``# Initialization``    ``for` `i ``in` `range``(``2``, ``MAX` `+` `1``) :``        ``prime[i] ``=` `1``;` `    ``# 0 and 1 are not primes``    ``prime[``0``] ``=` `prime[``1``] ``=` `0``;` `    ``# Mark composite numbers as false``    ``# and prime numbers as true``    ``for` `i ``in` `range``(``2``, ``int``(sqrt(``MAX``) ``+` `1``)) :``        ``if` `(prime[i] ``=``=` `1``) :``            ``for` `j ``in` `range``(i``*``i, ``MAX``, i) :``                ``prime[j] ``=` `0``;` `    ``# Update prime[] such that``    ``# prime[i] will store the count of``    ``# all the prime numbers <= i``    ``for` `i ``in` `range``(``1``, ``MAX``) :``        ``prime[i] ``+``=` `prime[i ``-` `1``];` `# Function to return the absolute difference``# between the number of primes and the number``# of composite numbers in the range [l, r]``def` `getDifference(l, r) :` `    ``# Total elements in the range``    ``total ``=` `r ``-` `l ``+` `1``;` `    ``# Count of primes in the range [l, r]``    ``primes ``=` `prime[r] ``-` `prime[l ``-` `1``];` `    ``# Count of composite numbers``    ``# in the range [l, r]``    ``composites ``=` `total ``-` `primes;` `    ``# Return the sbsolute difference``    ``return` `(``abs``(primes ``-` `composites));`  `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``queries ``=` `[ [ ``1``, ``10` `],[ ``5``, ``30` `] ];``    ``q ``=` `len``(queries);` `    ``updatePrimes();` `    ``# Perform queries``    ``for` `i ``in` `range``(q) :``        ``print``(getDifference(queries[i][``0``],``                            ``queries[i][``1``]))``            ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;``    ` `class` `GFG``{``    ``static` `int` `MAX = 1000000;``    ``static` `int` `[]prime = ``new` `int``[MAX + 1];` `    ``// Function to update prime[]``    ``// such prime[i] stores the``    ``// count of prime numbers <= i``    ``static` `void` `updatePrimes()``    ``{``        ``// prime[] marks all prime numbers as true``        ``// so prime[i] = 1 if ith number is a prime``    ` `        ``// Initialization``        ``for` `(``int` `i = 2; i <= MAX; i++)``        ``{``            ``prime[i] = 1;``        ``}``    ` `        ``// 0 and 1 are not primes``        ``prime[0] = prime[1] = 0;``    ` `        ``// Mark composite numbers as false``        ``// and prime numbers as true``        ``for` `(``int` `i = 2; i * i <= MAX; i++)``        ``{``            ``if` `(prime[i] == 1)``            ``{``                ``for` `(``int` `j = i * i; j <= MAX; j += i)``                ``{``                    ``prime[j] = 0;``                ``}``            ``}``        ``}` `        ``// Update prime[] such that``        ``// prime[i] will store the count of``        ``// all the prime numbers <= i``        ``for` `(``int` `i = 1; i <= MAX; i++)``        ``{``            ``prime[i] += prime[i - 1];``        ``}``    ``}` `    ``// Function to return the absolute difference``    ``// between the number of primes and the number``    ``// of composite numbers in the range [l, r]``    ``static` `int` `getDifference(``int` `l, ``int` `r)``    ``{``    ` `        ``// Total elements in the range``        ``int` `total = r - l + 1;``    ` `        ``// Count of primes in the range [l, r]``        ``int` `primes = prime[r] - prime[l - 1];``    ` `        ``// Count of composite numbers``        ``// in the range [l, r]``        ``int` `composites = total - primes;``    ` `        ``// Return the sbsolute difference``        ``return` `(Math.Abs(primes - composites));``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main ()``    ``{` `        ``int` `[,]queries = { { 1, 10 }, { 5, 30 } };``        ``int` `q = queries.GetLength(0);``        ``updatePrimes();``        ` `        ``// Perform queries``        ``for` `(``int` `i = 0; i < q; i++)``            ``Console.WriteLine(getDifference(queries[i,0],``                                ``queries[i,1]));` `    ``}``}` `/* This code contributed by PrinciRaj1992 */`

## Javascript

 ``
Output:
```2
10```

My Personal Notes arrow_drop_up