Queries for count of even digit sum elements in given range using MO’s Algorithm

Given an array arr[] of N elements, the task is to answer Q queries each having two integers L and R. For each query, the task is to find the number of elements in the subarray arr[L…R] whose digit sum is even.

Examples:  

Input:arr[] = {7, 3, 19, 13, 5, 4} 
query = { {1, 5}, {0, 1} } 
Output:
Explanation: 
Query 1: Elements 19, 13 and 4 have even digit sum in the subarray: {3, 9, 13, 5, 4}. 
Query 2: No elements have even sum in the subarray: {7, 3}

Input:arr[] = {0, 1, 2, 3, 4, 5, 6, 7} 
query = { 3, 5 } 
Output:

We have already discussed this approach: Queries for the count of even digit sum elements in the given range using Segment Tree



Approach: (Using MO’s Algorithm) 
The idea is to pre-process all queries so that result of one query can be used in the next query.  

  1. Sort all queries in a way that queries with L values from 0 to √n – 1 are put together, followed by queries from √n to 2×√n – 1, and so on. All queries within a block are sorted in increasing order of R values.
  2. Process all queries one by one and increase the count of even digit sum elements and store the result in the structure.
    • Let count_even store the count of even digits sum elements in the previous query.
    • Remove extra elements of previous query and add new elements for the current query. For example, if previous query was [0, 8] and the current query is [3, 9], then remove the elements arr[0], arr[1] and arr[2] and add arr[9].
  3. In order to display the results, sort the queries in the order they were provided.

Helper functions:
Adding elements() 

  • If the current element has even digit sum then increase the count of count_even.

Removing elements() 

  • If the current element has even digit sum then decrease the count of count_even.

Below code is the implementation of the above approach: 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count of even
// digit sum elements in the given
// range using MO's algorithm
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100000
 
// Variable to represent block size.
// This is made global so compare()
// of sort can use it.
int block;
 
// Structure to represent a query range
struct Query {
 
    // Starting index
    int L;
 
    // Ending index
    int R;
 
    // Index of query
    int index;
 
    // Count of even
    // even digit sum
    int even;
};
 
// To store the count of
// even digit sum
int count_even;
 
// Function used to sort all queries so that
// all queries of the same block are arranged
// together and within a block, queries are
// sorted in increasing order of R values.
bool compare(Query x, Query y)
{
    // Different blocks, sort by block.
    if (x.L / block != y.L / block)
        return x.L / block < y.L / block;
 
    // Same block, sort by R value
    return x.R < y.R;
}
 
// Function used to sort all queries
// in order of their index value so that
// results of queries can be printed
// in same order as of input
bool compare1(Query x, Query y)
{
    return x.index < y.index;
}
 
// Function to find the digit sum
// for a number
int digitSum(int num)
{
    int sum = 0;
    while (num) {
        sum += (num % 10);
        num /= 10;
    }
 
    return sum;
}
 
// Function to Add elements
// of current range
void add(int currL, int a[])
{
    // If digit sum of a[currL]
    // is even then increment
    if (digitSum(a[currL]) % 2 == 0)
        count_even++;
}
 
// Function to remove elements
// of previous range
void remove(int currR, int a[])
{
 
    // If digit sum of a[currL]
    // is even then decrement
    if (digitSum(a[currR]) % 2 == 0)
        count_even--;
}
 
// Function to generate
// the result of queries
void queryResults(int a[], int n,
                  Query q[], int m)
{
 
    // Initialize number of
    // even digit sum to 0
    count_even = 0;
 
    // Find block size
    block = (int)sqrt(n);
 
    // Sort all queries so that queries of
    // same blocks are arranged together.
    sort(q, q + m, compare);
 
    // Initialize current L, current R and
    // current result
    int currL = 0, currR = 0;
 
    for (int i = 0; i < m; i++) {
        // L and R values of current range
        int L = q[i].L, R = q[i].R;
 
        // Add Elements of current range
        while (currR <= R) {
            add(currR, a);
            currR++;
        }
        while (currL > L) {
            add(currL - 1, a);
            currL--;
        }
 
        // Remove element of previous range
        while (currR > R + 1)
 
        {
            remove(currR - 1, a);
            currR--;
        }
        while (currL < L) {
            remove(currL, a);
            currL++;
        }
 
        q[i].even = count_even;
    }
}
// Function to display the results of
// queries in their initial order
void printResults(Query q[], int m)
{
    sort(q, q + m, compare1);
    for (int i = 0; i < m; i++) {
        cout << q[i].even << endl;
    }
}
 
// Driver Code
int main()
{
 
    int arr[] = { 5, 2, 3, 1, 4, 8, 10, 12 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    Query q[] = { { 1, 3, 0, 0 },
                  { 0, 4, 1, 0 },
                  { 4, 7, 2, 0 } };
 
    int m = sizeof(q) / sizeof(q[0]);
 
    queryResults(arr, n, q, m);
 
    printResults(q, m);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count of even
// digit sum elements in the given
// range using MO's algorithm
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
 
class GFG{
 
static int MAX = 100000;
 
// Variable to represent block size.
// This is made global so compare()
// of sort can use it.
static int block;
 
// Structure to represent a query range
static class Query
{
     
    // Starting index
    int L;
 
    // Ending index
    int R;
 
    // Index of query
    int index;
 
    // Count of even
    // even digit sum
    int even;
 
    public Query(int l, int r,
                 int index, int even)
    {
        this.L = l;
        this.R = r;
        this.index = index;
        this.even = even;
    }
};
 
// To store the count of
// even digit sum
static int count_even;
 
// Function to find the digit sum
// for a number
static int digitSum(int num)
{
    int sum = 0;
    while (num > 0)
    {
        sum += (num % 10);
        num /= 10;
    }
    return sum;
}
 
// Function to Add elements
// of current range
static void add(int currL, int a[])
{
     
    // If digit sum of a[currL]
    // is even then increment
    if (digitSum(a[currL]) % 2 == 0)
        count_even++;
}
 
// Function to remove elements
// of previous range
static void remove(int currR, int a[])
{
     
    // If digit sum of a[currL]
    // is even then decrement
    if (digitSum(a[currR]) % 2 == 0)
        count_even--;
}
 
// Function to generate
// the result of queries
static void queryResults(int a[], int n,
                       Query q[], int m)
{
     
    // Initialize number of
    // even digit sum to 0
    count_even = 0;
 
    // Find block size
    block = (int) Math.sqrt(n);
 
    // Sort all queries so that queries of
    // same blocks are arranged together.
    Collections.sort(Arrays.asList(q),
                     new Comparator<Query>()
    {
         
        // Function used to sort all queries so that
        // all queries of the same block are arranged
        // together and within a block, queries are
        // sorted in increasing order of R values.
        public int compare(Query x, Query y)
        {
             
            // Different blocks, sort by block.
            if (x.L / block != y.L / block)
                return x.L / block - y.L / block;
 
            // Same block, sort by R value
            return x.R - y.R;
        }
    });
 
    // Initialize current L, current R and
    // current result
    int currL = 0, currR = 0;
 
    for(int i = 0; i < m; i++)
    {
         
        // L and R values of current range
        int L = q[i].L, R = q[i].R;
 
        // Add Elements of current range
        while (currR <= R)
        {
            add(currR, a);
            currR++;
        }
        while (currL > L)
        {
            add(currL - 1, a);
            currL--;
        }
 
        // Remove element of previous range
        while (currR > R + 1)
        {
            remove(currR - 1, a);
            currR--;
        }
        while (currL < L)
        {
            remove(currL, a);
            currL++;
        }
        q[i].even = count_even;
    }
}
 
// Function to display the results of
// queries in their initial order
static void printResults(Query q[], int m)
{
    Collections.sort(Arrays.asList(q),
             new Comparator<Query>()
    {
         
        // Function used to sort all queries
        // in order of their index value so that
        // results of queries can be printed
        // in same order as of input
        public int compare(Query x, Query y)
        {
            return x.index - y.index;
        }
    });
    for(int i = 0; i < m; i++)
    {
        System.out.println(q[i].even);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 5, 2, 3, 1, 4, 8, 10, 12 };
    int n = arr.length;
 
    Query q[] = { new Query(1, 3, 0, 0),
                  new Query(0, 4, 1, 0),
                  new Query(4, 7, 2, 0) };
 
    int m = q.length;
 
    queryResults(arr, n, q, m);
 
    printResults(q, m);
}
}
 
// This code is contributed by sanjeev2552
chevron_right

Output: 
1
2
2



 

Time Complexity: O(Q x √N)
 




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sanjeev2552

Article Tags :
Practice Tags :