Related Articles

# Queries for Composite numbers in subarray (With Point Updates)

• Last Updated : 17 Aug, 2021

Given an array of N integers, the task is to perform the following two operations on the given array:

query(start, end) : Print the number of Composite numbers in the subarray from start to end
update(i, x) : update the value at index i to x, i.e arr[i] = x

Examples

```Input : arr = {1, 12, 3, 5, 17, 9}
Query 1: query(start = 0, end = 4)
Query 2: update(i = 3, x = 6)
Query 3: query(start = 0, end = 4)
Output :1
2
Explanation
In Query 1, the subarray [0...4]
has 1 Composite number viz. {12}

In Query 2, the value at index 3
is updated to 6, the array arr now is, {1, 12, 3,
6, 7, 9}
In Query 3, the subarray [0...4]
has 2 Composite Numbers viz. {12, 6}```

Since we need to handle both range queries and point updates, an efficient method is to use a segment tree to solve the problem. A segment tree is best suited for this purpose.
We can use Sieve of Eratosthenes to preprocess all the primes till the maximum value that arri can take, say MAX. The time complexity for this operation will be O(MAX log(log(MAX))).
Building the segment tree:
The problem can be reduced to subarray sum using segment tree.
Now, we can build the segment tree where a leaf node is represented as either 0 (if it is a prime number) or 1 (if it is a composite number).
The internal nodes of the segment tree equal to the sum of its child nodes, thus a node represents the total composite numbers in the range from L to R where the range L to R falls under this node and the sub-tree below it.
Whenever we get a query from start to end, then we can query the segment tree for the sum of nodes in the range start to end, which in turn represents the number of composites in the range start to end.
If we need to perform a point update and update the value at index i to x, then we check for the following cases:

Let the old value of arri be y and the new value be x.
Case 1: If x and y both are composites.
Count of composites in the subarray does not change, so we just update array and donot
modify the segment tree
Case 2: If x and y both are primes.
Count of composites in the subarray does not change, so we just update array and donot
modify the segment tree
Case 3: If y is composite but x is prime.
Count of composite numbers in the subarray decreases, so we update array and add -1 to every
range, the index i which is to be updated, is a part of in the segment tree
Case 4: If y is prime but x is composite.
Count of composite numbers in the subarray increases, so we update array and add 1 to every
range, the index i which is to be updated, is a part of in the segment tree

Below is the implementation of the above approach:

## C++

 `// C++ program to find number of composite numbers in a``// subarray and performing updates` `#include ``using` `namespace` `std;` `#define MAX 1000` `// Function to calculate primes upto MAX``// using sieve of Eratosthenes``void` `sieveOfEratosthenes(``bool` `isPrime[])``{``    ``isPrime[1] = ``true``;` `    ``for` `(``int` `p = 2; p * p <= MAX; p++) {` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(isPrime[p] == ``true``) {` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * 2; i <= MAX; i += p)``                ``isPrime[i] = ``false``;``        ``}``    ``}``}` `// A utility function to get the middle``// index from corner indexes.``int` `getMid(``int` `s, ``int` `e)``{``    ``return` `s + (e - s) / 2;``}` `/*  A recursive function to get the number of composites``    ``in a given range of array indexes. The following are``    ``parameters for this function.` `    ``st --> Pointer to segment tree``    ``index --> Index of current node in the segment tree.``              ``Initially 0 is passed as root is always``              ``at index 0.``    ``ss & se --> Starting and ending indexes of the``                ``segment represented by current node,``                ``i.e., st[index]``    ``qs & qe --> Starting and ending indexes of``    ``query range``*/``int` `queryCompositesUtil(``int``* st, ``int` `ss, ``int` `se, ``int` `qs,``                        ``int` `qe, ``int` `index)``{``    ``// If segment of this node is a part of given range,``    ``// then return the number of composites``    ``// in the segment``    ``if` `(qs <= ss && qe >= se)``        ``return` `st[index];` `    ``// If segment of this node is``    ``// outside the given range``    ``if` `(se < qs || ss > qe)``        ``return` `0;` `    ``// If a part of this segment``    ``// overlaps with the given range``    ``int` `mid = getMid(ss, se);``    ``return` `queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1)``           ``+ queryCompositesUtil(st, mid + 1, se, qs, qe, 2 * index + 2);``}` `/*  A recursive function to update the nodes which``    ``have the given index in their range. The following``    ``are parameters st, si, ss and se are same as getSumUtil()``    ` `    ``i --> index of the element to be updated. This index is``          ``in input array.``    ``diff --> Value to be added to all nodes which``          ``have i in range``*/``void` `updateValueUtil(``int``* st, ``int` `ss, ``int` `se, ``int` `i,``                     ``int` `diff, ``int` `si)``{``    ``// Base Case: If the input index``    ``// lies outside the range of``    ``// this segment``    ``if` `(i < ss || i > se)``        ``return``;` `    ``// If the input index is in range of``    ``// this node, then update the value of``    ``// the node and its children``    ``st[si] = st[si] + diff;` `    ``if` `(se != ss) {``        ``int` `mid = getMid(ss, se);``        ``updateValueUtil(st, ss, mid, i, diff, 2 * si + 1);``        ``updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2);``    ``}``}` `// The function to update a value in input``// array and segment tree. It uses updateValueUtil()``// to update the value in segment tree``void` `updateValue(``int` `arr[], ``int``* st, ``int` `n, ``int` `i,``                 ``int` `new_val, ``bool` `isPrime[])``{``    ``// Check for erroneous input index``    ``if` `(i < 0 || i > n - 1) {``        ``printf``(``"Invalid Input"``);``        ``return``;``    ``}` `    ``int` `diff, oldValue;` `    ``oldValue = arr[i];` `    ``// Update the value in array``    ``arr[i] = new_val;` `    ``// Case 1: Old and new values both are primes``    ``if` `(isPrime[oldValue] && isPrime[new_val])``        ``return``;` `    ``// Case 2: Old and new values both composite``    ``if` `((!isPrime[oldValue]) && (!isPrime[new_val]))``        ``return``;` `    ``// Case 3: Old value was composite, new value is prime``    ``if` `(!isPrime[oldValue] && isPrime[new_val]) {``        ``diff = -1;``    ``}` `    ``// Case 4: Old value was prime, new_val is composite``    ``if` `(isPrime[oldValue] && !isPrime[new_val]) {``        ``diff = 1;``    ``}` `    ``// Update the values of nodes in segment tree``    ``updateValueUtil(st, 0, n - 1, i, diff, 0);``}` `// Return number of composite numbers in range``// from index qs (query start) to qe (query end).``// It mainly uses queryCompositesUtil()``void` `queryComposites(``int``* st, ``int` `n, ``int` `qs, ``int` `qe)``{``    ``int` `compositesInRange = queryCompositesUtil(st, 0, n - 1, qs, qe, 0);` `    ``cout << ``"Number of Composites in subarray from "` `<< qs``         ``<< ``" to "` `<< qe << ``" = "` `<< compositesInRange << ``"\n"``;``}` `// A recursive function that constructs Segment Tree``// for array[ss..se].``// si is index of current node in segment tree st``int` `constructSTUtil(``int` `arr[], ``int` `ss, ``int` `se, ``int``* st,``                    ``int` `si, ``bool` `isPrime[])``{``    ``// If there is one element in array, check if it``    ``// is prime then store 1 in the segment tree else``    ``// store 0 and return``    ``if` `(ss == se) {` `        ``// if arr[ss] is composite``        ``if` `(!isPrime[arr[ss]])``            ``st[si] = 1;``        ``else``            ``st[si] = 0;` `        ``return` `st[si];``    ``}` `    ``// If there are more than one elements, then recur``    ``// for left and right subtrees and store the sum``    ``// of the two values in this node``    ``int` `mid = getMid(ss, se);``    ``st[si] = constructSTUtil(arr, ss, mid, st,``                             ``si * 2 + 1, isPrime)``             ``+ constructSTUtil(arr, mid + 1, se, st,``                               ``si * 2 + 2, isPrime);``    ``return` `st[si];``}` `/*  Function to construct segment tree from given array.``    ``This function allocates memory for segment tree and``    ``calls constructSTUtil() to fill the allocated memory */``int``* constructST(``int` `arr[], ``int` `n, ``bool` `isPrime[])``{``    ``// Allocate memory for segment tree` `    ``// Height of segment tree``    ``int` `x = (``int``)(``ceil``(log2(n)));` `    ``// Maximum size of segment tree``    ``int` `max_size = 2 * (``int``)``pow``(2, x) - 1;` `    ``int``* st = ``new` `int``[max_size];` `    ``// Fill the allocated memory st``    ``constructSTUtil(arr, 0, n - 1, st, 0, isPrime);` `    ``// Return the constructed segment tree``    ``return` `st;``}` `// Driver Code``int` `main()``{` `    ``int` `arr[] = { 1, 12, 3, 5, 17, 9 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``/*  Preprocess all primes till MAX.``        ``Create a boolean array "isPrime[0..MAX]".``        ``A value in prime[i] will finally be false``        ``if i is composite, else true.``    ``*/``    ``bool` `isPrime[MAX + 1];``    ``memset``(isPrime, ``true``, ``sizeof` `isPrime);``    ``sieveOfEratosthenes(isPrime);` `    ``// Build segment tree from given array``    ``int``* st = constructST(arr, n, isPrime);` `    ``// Query 1: Query(start = 0, end = 4)``    ``int` `start = 0;``    ``int` `end = 4;``    ``queryComposites(st, n, start, end);` `    ``// Query 2: Update(i = 3, x = 6), i.e Update``    ``// a[i] to x``    ``int` `i = 3;``    ``int` `x = 6;``    ``updateValue(arr, st, n, i, x, isPrime);` `    ``// Query 3: Query(start = 0, end = 4)``    ``start = 0;``    ``end = 4;``    ``queryComposites(st, n, start, end);` `    ``return` `0;``}`

## Java

 `// Java program to find number of composite numbers in a``// subarray and performing updates``public` `class` `Main``{``    ``static` `int` `MAX = ``1000``;``     ` `    ``// Function to calculate primes upto MAX``    ``// using sieve of Eratosthenes``    ``static` `void` `sieveOfEratosthenes(``boolean``[] isPrime)``    ``{``        ``isPrime[``1``] = ``true``;``      ` `        ``for` `(``int` `p = ``2``; p * p <= MAX; p++) {``      ` `            ``// If prime[p] is not changed, then``            ``// it is a prime``            ``if` `(isPrime[p] == ``true``) {``      ` `                ``// Update all multiples of p``                ``for` `(``int` `i = p * ``2``; i <= MAX; i += p)``                    ``isPrime[i] = ``false``;``            ``}``        ``}``    ``}``      ` `    ``// A utility function to get the middle``    ``// index from corner indexes.``    ``static` `int` `getMid(``int` `s, ``int` `e)``    ``{``        ``return` `s + (e - s) / ``2``;``    ``}``      ` `    ``/*  A recursive function to get the number of composites``        ``in a given range of array indexes. The following are``        ``parameters for this function.``      ` `        ``st --> Pointer to segment tree``        ``index --> Index of current node in the segment tree.``                  ``Initially 0 is passed as root is always``                  ``at index 0.``        ``ss & se --> Starting and ending indexes of the``                    ``segment represented by current node,``                    ``i.e., st[index]``        ``qs & qe --> Starting and ending indexes of``        ``query range``    ``*/``    ``static` `int` `queryCompositesUtil(``int``[] st, ``int` `ss, ``int` `se, ``int` `qs, ``int` `qe, ``int` `index)``    ``{``        ``// If segment of this node is a part of given range,``        ``// then return the number of composites``        ``// in the segment``        ``if` `(qs <= ss && qe >= se)``            ``return` `st[index];``      ` `        ``// If segment of this node is``        ``// outside the given range``        ``if` `(se < qs || ss > qe)``            ``return` `0``;``      ` `        ``// If a part of this segment``        ``// overlaps with the given range``        ``int` `mid = getMid(ss, se);``        ``return` `queryCompositesUtil(st, ss, mid, qs, qe, ``2` `* index + ``1``)``               ``+ queryCompositesUtil(st, mid + ``1``, se, qs, qe, ``2` `* index + ``2``);``    ``}``      ` `    ``/*  A recursive function to update the nodes which``        ``have the given index in their range. The following``        ``are parameters st, si, ss and se are same as getSumUtil()``          ` `        ``i --> index of the element to be updated. This index is``              ``in input array.``        ``diff --> Value to be added to all nodes which``              ``have i in range``    ``*/``    ``static` `void` `updateValueUtil(``int``[] st, ``int` `ss, ``int` `se, ``int` `i, ``int` `diff, ``int` `si)``    ``{``        ``// Base Case: If the input index``        ``// lies outside the range of``        ``// this segment``        ``if` `(i < ss || i > se)``            ``return``;``      ` `        ``// If the input index is in range of``        ``// this node, then update the value of``        ``// the node and its children``        ``st[si] = st[si] + diff;``      ` `        ``if` `(se != ss) {``            ``int` `mid = getMid(ss, se);``            ``updateValueUtil(st, ss, mid, i, diff, ``2` `* si + ``1``);``            ``updateValueUtil(st, mid + ``1``, se, i, diff, ``2` `* si + ``2``);``        ``}``    ``}``      ` `    ``// The function to update a value in input``    ``// array and segment tree. It uses updateValueUtil()``    ``// to update the value in segment tree``    ``static` `void` `updateValue(``int``[] arr, ``int``[] st, ``int` `n, ``int` `i, ``int` `new_val, ``boolean``[] isPrime)``    ``{``        ``// Check for erroneous input index``        ``if` `(i < ``0` `|| i > n - ``1``) {``            ``System.out.print(``"Invalid Input"``);``            ``return``;``        ``}``      ` `        ``int` `diff = ``0``, oldValue;``      ` `        ``oldValue = arr[i];``      ` `        ``// Update the value in array``        ``arr[i] = new_val;``      ` `        ``// Case 1: Old and new values both are primes``        ``if` `(isPrime[oldValue] && isPrime[new_val])``            ``return``;``      ` `        ``// Case 2: Old and new values both composite``        ``if` `((!isPrime[oldValue]) && (!isPrime[new_val]))``            ``return``;``      ` `        ``// Case 3: Old value was composite, new value is prime``        ``if` `(!isPrime[oldValue] && isPrime[new_val]) {``            ``diff = -``1``;``        ``}``      ` `        ``// Case 4: Old value was prime, new_val is composite``        ``if` `(isPrime[oldValue] && !isPrime[new_val]) {``            ``diff = ``1``;``        ``}``      ` `        ``// Update the values of nodes in segment tree``        ``updateValueUtil(st, ``0``, n - ``1``, i, diff, ``0``);``    ``}``      ` `    ``// Return number of composite numbers in range``    ``// from index qs (query start) to qe (query end).``    ``// It mainly uses queryCompositesUtil()``    ``static` `void` `queryComposites(``int``[] st, ``int` `n, ``int` `qs, ``int` `qe)``    ``{``        ``int` `compositesInRange = queryCompositesUtil(st, ``0``, n - ``1``, qs, qe, ``0``);``      ` `        ``System.out.println(``"Number of Composites in subarray from "` `+ qs``             ``+ ``" to "` `+ qe + ``" = "` `+ compositesInRange);``    ``}``      ` `    ``// A recursive function that constructs Segment Tree``    ``// for array[ss..se].``    ``// si is index of current node in segment tree st``    ``static` `int` `constructSTUtil(``int``[] arr, ``int` `ss, ``int` `se, ``int``[] st, ``int` `si, ``boolean``[] isPrime)``    ``{``        ``// If there is one element in array, check if it``        ``// is prime then store 1 in the segment tree else``        ``// store 0 and return``        ``if` `(ss == se) {``      ` `            ``// if arr[ss] is composite``            ``if` `(!isPrime[arr[ss]])``                ``st[si] = ``1``;``            ``else``                ``st[si] = ``0``;``      ` `            ``return` `st[si];``        ``}``      ` `        ``// If there are more than one elements, then recur``        ``// for left and right subtrees and store the sum``        ``// of the two values in this node``        ``int` `mid = getMid(ss, se);``        ``st[si] = constructSTUtil(arr, ss, mid, st,``                                 ``si * ``2` `+ ``1``, isPrime)``                 ``+ constructSTUtil(arr, mid + ``1``, se, st,``                                   ``si * ``2` `+ ``2``, isPrime);``        ``return` `st[si];``    ``}``      ` `    ``/*  Function to construct segment tree from given array.``        ``This function allocates memory for segment tree and``        ``calls constructSTUtil() to fill the allocated memory */``    ``static` `int``[] constructST(``int``[] arr, ``int` `n, ``boolean``[] isPrime)``    ``{``        ``// Allocate memory for segment tree``      ` `        ``// Height of segment tree``        ``int` `x = (``int``)(Math.ceil(Math.log(n) / Math.log(``2``)));``      ` `        ``// Maximum size of segment tree``        ``int` `max_size = ``2` `* (``int``)Math.pow(``2``, x) - ``1``;``      ` `        ``int``[] st = ``new` `int``[max_size];``      ` `        ``// Fill the allocated memory st``        ``constructSTUtil(arr, ``0``, n - ``1``, st, ``0``, isPrime);``      ` `        ``// Return the constructed segment tree``        ``return` `st;``    ``}``    ` `    ``public` `static` `void` `main(String[] args) {``        ``int``[] arr = { ``1``, ``12``, ``3``, ``5``, ``17``, ``9` `};``        ``int` `n = arr.length;``      ` `        ``/*  Preprocess all primes till MAX.``            ``Create a boolean array "isPrime[0..MAX]".``            ``A value in prime[i] will finally be false``            ``if i is composite, else true.``        ``*/``        ``boolean``[] isPrime = ``new` `boolean``[MAX + ``1``];``        ``for``(``int` `a = ``0``; a < MAX + ``1``; a++)``        ``{``            ``isPrime[a] = ``true``;``        ``}``        ``sieveOfEratosthenes(isPrime);``      ` `        ``// Build segment tree from given array``        ``int``[] st = constructST(arr, n, isPrime);``      ` `        ``// Query 1: Query(start = 0, end = 4)``        ``int` `start = ``0``;``        ``int` `end = ``4``;``        ``queryComposites(st, n, start, end);``      ` `        ``// Query 2: Update(i = 3, x = 6), i.e Update``        ``// a[i] to x``        ``int` `i = ``3``;``        ``int` `x = ``6``;``        ``updateValue(arr, st, n, i, x, isPrime);``      ` `        ``// Query 3: Query(start = 0, end = 4)``        ``start = ``0``;``        ``end = ``4``;``        ``queryComposites(st, n, start, end);``    ``}``}` `// This code is contributed by divyeshrabadiya07.`

## Python3

 `# Python3 program to find``# number of composite numbers``# in a subarray and performing``# updates``import` `math``MAX` `=` `1000` `# Function to calculate primes``# upto MAX using sieve of Eratosthenes``def` `sieveOfEratosthenes(isPrime):` `    ``isPrime[``1``] ``=` `True``;``    ``p ``=` `2``    ` `    ``while` `p ``*` `p <``=` `MAX``:` `        ``# If prime[p] is not``        ``# changed, then``        ``# it is a prime``        ``if` `(isPrime[p] ``=``=` `True``):` `            ``# Update all multiples of p``            ``for` `i ``in` `range``(p ``*` `2``,``                           ``MAX` `+` `1``,  p):``                ``isPrime[i] ``=` `False``;``        ``p ``+``=` `1` `# A utility function to get``# the middle index from``# corner indexes.``def` `getMid(s, e):` `    ``return` `s ``+` `(e ``-` `s) ``/``/` `2``;` `'''  A recursive function to get the number``    ``of composites in a given range of array``    ``indexes. The following are parameters``    ``for this function.` `    ``st --> Pointer to segment tree``    ``index --> Index of current node in the``              ``segment tree. Initially 0 is``              ``passed as root is always at``              ``index 0.``    ``ss & se --> Starting and ending indexes``                ``of the segment represented``                ``by current node, i.e., st[index]``    ``qs & qe --> Starting and ending indexes of``    ``query range``'''` `def` `queryCompositesUtil(st, ss, se, qs,``                        ``qe, index):` `    ``# If segment of this node is a``    ``# part of given range, then``    ``# return the number of composites``    ``# in the segment``    ``if` `(qs <``=` `ss ``and` `qe >``=` `se):``        ``return` `st[index];` `    ``# If segment of this node is``    ``# outside the given range``    ``if` `(se < qs ``or` `ss > qe):``        ``return` `0``;` `    ``# If a part of this segment``    ``# overlaps with the given range``    ``mid ``=` `getMid(ss, se);``    ``return` `(queryCompositesUtil(st, ss,``                                ``mid, qs,``                                ``qe, ``2` `*` `index ``+` `1``) ``+``            ``queryCompositesUtil(st, mid ``+` `1``,``                                ``se, qs, qe,``                                ``2` `*` `index ``+` `2``));` `'''  A recursive function to update the``     ``nodes which have the given index in``     ``their range. The following are parameters``     ``st, si, ss and se are same as getSumUtil()` `     ``i --> index of the element to be updated.``           ``This index is in input array.``     ``diff --> Value to be added to all nodes``              ``which have i in range``'''``def` `updateValueUtil(st, ss, se, i,``                    ``diff, si):` `    ``# Base Case: If the input index``    ``# lies outside the range of``    ``# this segment``    ``if` `(i < ss ``or` `i > se):``        ``return``;` `    ``# If the input index is in``    ``# range of this node, then``    ``# update the value of the``    ``# node and its children``    ``st[si] ``=` `st[si] ``+` `diff;` `    ``if` `(se !``=` `ss):``        ``mid ``=` `getMid(ss, se);``        ``updateValueUtil(st, ss,``                        ``mid, i,``                        ``diff, ``2` `*` `si ``+` `1``);``        ``updateValueUtil(st, mid ``+` `1``,``                        ``se, i, diff,``                        ``2` `*` `si ``+` `2``);` `# The function to update a value``# in input array and segment tree.``# It uses updateValueUtil() to``# update the value in segment tree``def` `updateValue(arr,  st, n, i,``                ``new_val, isPrime):` `    ``# Check for erroneous``    ``# input index``    ``if` `(i < ``0` `or` `i > n ``-` `1``):``        ``print``(``"Invalid Input"``);``        ``return` `    ``oldValue ``=` `arr[i];` `    ``# Update the value in array``    ``arr[i] ``=` `new_val;` `    ``# Case 1: Old and new values``    ``# both are primes``    ``if` `(isPrime[oldValue] ``and``        ``isPrime[new_val]):``        ``return``;` `    ``# Case 2: Old and new values``    ``# both composite``    ``if` `((``not` `isPrime[oldValue]) ``and``        ``(``not` `isPrime[new_val])):``        ``return``;` `    ``# Case 3: Old value was composite,``    ``# new value is prime``    ``if` `(``not` `isPrime[oldValue] ``and``        ``isPrime[new_val]):``        ``diff ``=` `-``1``;` `    ``# Case 4: Old value was prime,``    ``# new_val is composite``    ``if` `(isPrime[oldValue] ``and``        ``not` `isPrime[new_val]):``        ``diff ``=` `1``;` `    ``# Update the values of``    ``# nodes in segment tree``    ``updateValueUtil(st, ``0``,``                    ``n ``-` `1``, i,``                    ``diff, ``0``);` `# Return number of composite``# numbers in range from index``# qs (query start) to qe (query end).``# It mainly uses queryCompositesUtil()``def` `queryComposites(st, n, qs, qe):` `    ``compositesInRange ``=` `queryCompositesUtil(st, ``0``,``                                            ``n ``-` `1``,``                                            ``qs, qe, ``0``);` `    ``print``(``"Number of Composites in subarray from "``,``          ``qs, ``" to "``, qe, ``" = "``, compositesInRange)` `# A recursive function that constructs``# Segment Tree for array[ss..se].``# si is index of current node in``# segment tree st``def` `constructSTUtil(arr, ss, se, st,``                    ``si, isPrime):` `    ``# If there is one element in array,``    ``# check if it is prime then store``    ``# 1 in the segment tree else store``    ``# 0 and return``    ``if` `(ss ``=``=` `se):` `        ``# if arr[ss] is composite``        ``if` `(``not` `isPrime[arr[ss]]):``            ``st[si] ``=` `1``;``        ``else``:``            ``st[si] ``=` `0``;` `        ``return` `st[si];` `    ``# If there are more than one elements,``    ``# then recur for left and right subtrees``    ``# and store the sum of the two values``    ``# in this node``    ``mid ``=` `getMid(ss, se);``    ``st[si] ``=` `(constructSTUtil(arr, ss,``                              ``mid, st,``                              ``si ``*` `2` `+` `1``,``                              ``isPrime) ``+``              ``constructSTUtil(arr, mid ``+` `1``,``                              ``se, st,``                              ``si ``*` `2` `+` `2``,``                              ``isPrime))``    ``return` `st[si];` `'''  Function to construct segment tree``     ``from given array. This function``     ``allocates memory for segment tree``     ``and calls constructSTUtil() to fill``     ``the allocated memory '''``def` `constructST(arr, n, isPrime):` `    ``# Allocate memory for``    ``# segment tree` `    ``# Height of segment tree``    ``x ``=` `(``int``)(math.ceil(math.log2(n)));` `    ``# Maximum size of segment tree``    ``max_size ``=` `2` `*` `pow``(``2``, x) ``-` `1``;` `    ``st ``=` `[``0``] ``*` `max_size` `    ``# Fill the allocated memory st``    ``constructSTUtil(arr, ``0``, n ``-` `1``,``                    ``st, ``0``, isPrime);` `    ``# Return the constructed``    ``# segment tree``    ``return` `st;` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:` `    ``arr ``=` `[``1``, ``12``, ``3``, ``5``, ``17``, ``9``]``    ``n ``=` `len``(arr)` `    ``'''  Preprocess all primes till MAX.``        ``Create a boolean array "isPrime[0..MAX]".``        ``A value in prime[i] will finally be false``        ``if i is composite, else true.``    ``'''``    ``isPrime ``=` `[``True``] ``*` `(``MAX` `+` `1``)``    ` `    ``sieveOfEratosthenes(isPrime);` `    ``# Build segment tree from given array``    ``st ``=` `constructST(arr, n, isPrime);` `    ``# Query 1: Query(start = 0,``    ``# end = 4)``    ``start ``=` `0``;``    ``end ``=` `4``;``    ``queryComposites(st, n,``                    ``start, end);` `    ``# Query 2: Update(i = 3, x = 6),``    ``# i.e Update a[i] to x``    ``i ``=` `3``;``    ``x ``=` `6``;``    ``updateValue(arr, st, n, i,``                ``x, isPrime);` `    ``# Query 3: Query(start = 0,``    ``# end = 4)``    ``start ``=` `0``;``    ``end ``=` `4``;``    ``queryComposites(st, n,``                    ``start, end)` `# This code is contributed by Chitranayal`

## C#

 `// C# program to find number of composite numbers in a``// subarray and performing updates``using` `System;``class` `GFG {``    ` `    ``static` `int` `MAX = 1000;``    ` `    ``// Function to calculate primes upto MAX``    ``// using sieve of Eratosthenes``    ``static` `void` `sieveOfEratosthenes(``bool``[] isPrime)``    ``{``        ``isPrime[1] = ``true``;``     ` `        ``for` `(``int` `p = 2; p * p <= MAX; p++) {``     ` `            ``// If prime[p] is not changed, then``            ``// it is a prime``            ``if` `(isPrime[p] == ``true``) {``     ` `                ``// Update all multiples of p``                ``for` `(``int` `i = p * 2; i <= MAX; i += p)``                    ``isPrime[i] = ``false``;``            ``}``        ``}``    ``}``     ` `    ``// A utility function to get the middle``    ``// index from corner indexes.``    ``static` `int` `getMid(``int` `s, ``int` `e)``    ``{``        ``return` `s + (e - s) / 2;``    ``}``     ` `    ``/*  A recursive function to get the number of composites``        ``in a given range of array indexes. The following are``        ``parameters for this function.``     ` `        ``st --> Pointer to segment tree``        ``index --> Index of current node in the segment tree.``                  ``Initially 0 is passed as root is always``                  ``at index 0.``        ``ss & se --> Starting and ending indexes of the``                    ``segment represented by current node,``                    ``i.e., st[index]``        ``qs & qe --> Starting and ending indexes of``        ``query range``    ``*/``    ``static` `int` `queryCompositesUtil(``int``[] st, ``int` `ss, ``int` `se, ``int` `qs, ``int` `qe, ``int` `index)``    ``{``        ``// If segment of this node is a part of given range,``        ``// then return the number of composites``        ``// in the segment``        ``if` `(qs <= ss && qe >= se)``            ``return` `st[index];``     ` `        ``// If segment of this node is``        ``// outside the given range``        ``if` `(se < qs || ss > qe)``            ``return` `0;``     ` `        ``// If a part of this segment``        ``// overlaps with the given range``        ``int` `mid = getMid(ss, se);``        ``return` `queryCompositesUtil(st, ss, mid, qs, qe, 2 * index + 1)``               ``+ queryCompositesUtil(st, mid + 1, se, qs, qe, 2 * index + 2);``    ``}``     ` `    ``/*  A recursive function to update the nodes which``        ``have the given index in their range. The following``        ``are parameters st, si, ss and se are same as getSumUtil()``         ` `        ``i --> index of the element to be updated. This index is``              ``in input array.``        ``diff --> Value to be added to all nodes which``              ``have i in range``    ``*/``    ``static` `void` `updateValueUtil(``int``[] st, ``int` `ss, ``int` `se, ``int` `i, ``int` `diff, ``int` `si)``    ``{``        ``// Base Case: If the input index``        ``// lies outside the range of``        ``// this segment``        ``if` `(i < ss || i > se)``            ``return``;``     ` `        ``// If the input index is in range of``        ``// this node, then update the value of``        ``// the node and its children``        ``st[si] = st[si] + diff;``     ` `        ``if` `(se != ss) {``            ``int` `mid = getMid(ss, se);``            ``updateValueUtil(st, ss, mid, i, diff, 2 * si + 1);``            ``updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2);``        ``}``    ``}``     ` `    ``// The function to update a value in input``    ``// array and segment tree. It uses updateValueUtil()``    ``// to update the value in segment tree``    ``static` `void` `updateValue(``int``[] arr, ``int``[] st, ``int` `n, ``int` `i, ``int` `new_val, ``bool``[] isPrime)``    ``{``        ``// Check for erroneous input index``        ``if` `(i < 0 || i > n - 1) {``            ``Console.Write(``"Invalid Input"``);``            ``return``;``        ``}``     ` `        ``int` `diff = 0, oldValue;``     ` `        ``oldValue = arr[i];``     ` `        ``// Update the value in array``        ``arr[i] = new_val;``     ` `        ``// Case 1: Old and new values both are primes``        ``if` `(isPrime[oldValue] && isPrime[new_val])``            ``return``;``     ` `        ``// Case 2: Old and new values both composite``        ``if` `((!isPrime[oldValue]) && (!isPrime[new_val]))``            ``return``;``     ` `        ``// Case 3: Old value was composite, new value is prime``        ``if` `(!isPrime[oldValue] && isPrime[new_val]) {``            ``diff = -1;``        ``}``     ` `        ``// Case 4: Old value was prime, new_val is composite``        ``if` `(isPrime[oldValue] && !isPrime[new_val]) {``            ``diff = 1;``        ``}``     ` `        ``// Update the values of nodes in segment tree``        ``updateValueUtil(st, 0, n - 1, i, diff, 0);``    ``}``     ` `    ``// Return number of composite numbers in range``    ``// from index qs (query start) to qe (query end).``    ``// It mainly uses queryCompositesUtil()``    ``static` `void` `queryComposites(``int``[] st, ``int` `n, ``int` `qs, ``int` `qe)``    ``{``        ``int` `compositesInRange = queryCompositesUtil(st, 0, n - 1, qs, qe, 0);``     ` `        ``Console.WriteLine(``"Number of Composites in subarray from "` `+ qs``             ``+ ``" to "` `+ qe + ``" = "` `+ compositesInRange);``    ``}``     ` `    ``// A recursive function that constructs Segment Tree``    ``// for array[ss..se].``    ``// si is index of current node in segment tree st``    ``static` `int` `constructSTUtil(``int``[] arr, ``int` `ss, ``int` `se, ``int``[] st, ``int` `si, ``bool``[] isPrime)``    ``{``        ``// If there is one element in array, check if it``        ``// is prime then store 1 in the segment tree else``        ``// store 0 and return``        ``if` `(ss == se) {``     ` `            ``// if arr[ss] is composite``            ``if` `(!isPrime[arr[ss]])``                ``st[si] = 1;``            ``else``                ``st[si] = 0;``     ` `            ``return` `st[si];``        ``}``     ` `        ``// If there are more than one elements, then recur``        ``// for left and right subtrees and store the sum``        ``// of the two values in this node``        ``int` `mid = getMid(ss, se);``        ``st[si] = constructSTUtil(arr, ss, mid, st,``                                 ``si * 2 + 1, isPrime)``                 ``+ constructSTUtil(arr, mid + 1, se, st,``                                   ``si * 2 + 2, isPrime);``        ``return` `st[si];``    ``}``     ` `    ``/*  Function to construct segment tree from given array.``        ``This function allocates memory for segment tree and``        ``calls constructSTUtil() to fill the allocated memory */``    ``static` `int``[] constructST(``int``[] arr, ``int` `n, ``bool``[] isPrime)``    ``{``        ``// Allocate memory for segment tree``     ` `        ``// Height of segment tree``        ``int` `x = (``int``)(Math.Ceiling(Math.Log(n) / Math.Log(2)));``     ` `        ``// Maximum size of segment tree``        ``int` `max_size = 2 * (``int``)Math.Pow(2, x) - 1;``     ` `        ``int``[] st = ``new` `int``[max_size];``     ` `        ``// Fill the allocated memory st``        ``constructSTUtil(arr, 0, n - 1, st, 0, isPrime);``     ` `        ``// Return the constructed segment tree``        ``return` `st;``    ``}` `  ``static` `void` `Main() {``    ``int``[] arr = { 1, 12, 3, 5, 17, 9 };``    ``int` `n = arr.Length;`` ` `    ``/*  Preprocess all primes till MAX.``        ``Create a boolean array "isPrime[0..MAX]".``        ``A value in prime[i] will finally be false``        ``if i is composite, else true.``    ``*/``    ``bool``[] isPrime = ``new` `bool``[MAX + 1];``    ``for``(``int` `a = 0; a < MAX + 1; a++)``    ``{``        ``isPrime[a] = ``true``;``    ``}``    ``sieveOfEratosthenes(isPrime);`` ` `    ``// Build segment tree from given array``    ``int``[] st = constructST(arr, n, isPrime);`` ` `    ``// Query 1: Query(start = 0, end = 4)``    ``int` `start = 0;``    ``int` `end = 4;``    ``queryComposites(st, n, start, end);`` ` `    ``// Query 2: Update(i = 3, x = 6), i.e Update``    ``// a[i] to x``    ``int` `i = 3;``    ``int` `x = 6;``    ``updateValue(arr, st, n, i, x, isPrime);`` ` `    ``// Query 3: Query(start = 0, end = 4)``    ``start = 0;``    ``end = 4;``    ``queryComposites(st, n, start, end);``  ``}``}` `// This code is contributed by decode2207.`

## Javascript

 ``
Output:
```Number of Composites in subarray from 0 to 4 = 1
Number of Composites in subarray from 0 to 4 = 2```

The time complexity of each query and update is O(logn) and that of building the segment tree is O(n)
Note: Here, the time complexity of pre-processing primes till MAX using the sieve of Eratosthenes is O(MAX log(log(MAX))) where MAX is the maximum value arri can take.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up