Queries for counts of array elements with values in given range
Given an unsorted array of size n, find no of elements between two elements i and j (both inclusive).
Examples:
Input : arr = [1 3 3 9 10 4] i1 = 1, j1 = 4 i2 = 9, j2 = 12 Output : 4 2 The numbers are: 1 3 3 4 for first query The numbers are: 9 10 for second query
Source: Amazon Interview Experience
A simple approach will be to run a for loop to check if each element is in the given range and maintain their count. Time complexity for running each query will be O(n).
Implementation:
C++
// Simple C++ program to count number of elements // with values in given range. #include <bits/stdc++.h> using namespace std; // function to count elements within given range int countInRange( int arr[], int n, int x, int y) { // initialize result int count = 0; for ( int i = 0; i < n; i++) { // check if element is in range if (arr[i] >= x && arr[i] <= y) count++; } return count; } // driver function int main() { int arr[] = { 1, 3, 4, 9, 10, 3 }; int n = sizeof (arr) / sizeof (arr[0]); // Answer queries int i = 1, j = 4; cout << countInRange(arr, n, i, j) << endl; i = 9, j = 12; cout << countInRange(arr, n, i, j) << endl; return 0; } |
Java
// Simple java program to count // number of elements with // values in given range. import java.io.*; class GFG { // function to count elements within given range static int countInRange( int arr[], int n, int x, int y) { // initialize result int count = 0 ; for ( int i = 0 ; i < n; i++) { // check if element is in range if (arr[i] >= x && arr[i] <= y) count++; } return count; } // driver function public static void main (String[] args) { int arr[] = { 1 , 3 , 4 , 9 , 10 , 3 }; int n = arr.length; // Answer queries int i = 1 , j = 4 ; System.out.println ( countInRange(arr, n, i, j)) ; i = 9 ; j = 12 ; System.out.println ( countInRange(arr, n, i, j)) ; } } // This article is contributed by vt_m |
Python3
# function to count elements within given range def countInRange(arr, n, x, y): # initialize result count = 0 ; for i in range (n): # check if element is in range if (arr[i] > = x and arr[i] < = y): count + = 1 return count # driver function arr = [ 1 , 3 , 4 , 9 , 10 , 3 ] n = len (arr) # Answer queries i = 1 j = 4 print (countInRange(arr, n, i, j)) i = 9 j = 12 print (countInRange(arr, n, i, j)) |
C#
// Simple C# program to count // number of elements with // values in given range. using System; class GFG { // function to count elements // within given range static int countInRange( int []arr, int n, int x, int y) { // initialize result int count = 0; for ( int i = 0; i < n; i++) { // check if element is in range if (arr[i] >= x && arr[i] <= y) count++; } return count; } // Driver Code public static void Main () { int []arr = {1, 3, 4, 9, 10, 3}; int n = arr.Length; // Answer queries int i = 1, j = 4; Console.WriteLine( countInRange(arr, n, i, j)) ; i = 9; j = 12; Console.WriteLine( countInRange(arr, n, i, j)) ; } } // This code is contributed by vt_m. |
PHP
<?php // Simple PHP program to count // number of elements with // values in given range. // function to count elements // within given range function countInRange( $arr , $n , $x , $y ) { // initialize result $count = 0; for ( $i = 0; $i < $n ; $i ++) { // check if element is in range if ( $arr [ $i ] >= $x && $arr [ $i ] <= $y ) $count ++; } return $count ; } // Driver Code $arr = array (1, 3, 4, 9, 10, 3); $n = count ( $arr ); // Answer queries $i = 1; $j = 4; echo countInRange( $arr , $n , $i , $j ). "\n" ; $i = 9; $j = 12; echo countInRange( $arr , $n , $i , $j ). "\n" ; // This code is contributed by Sam007 ?> |
Javascript
<script> // Simple JavaScript program to count // number of elements with // values in given range. // function to count elements // within given range function countInRange(arr, n, x, y) { // initialize result let count = 0; for (let i = 0; i < n; i++) { // check if element is in range if (arr[i] >= x && arr[i] <= y) count++; } return count; } let arr = [1, 3, 4, 9, 10, 3]; let n = arr.length; // Answer queries let i = 1, j = 4; document.write( countInRange(arr, n, i, j) + "</br>" ) ; i = 9; j = 12; document.write( countInRange(arr, n, i, j)) ; </script> |
4 2
Time Complexity: O(n),
Auxiliary Space: O(1)
Segment Tree approach :
The segment tree is a binary tree where each node represents a segment of the array. The leaves of the tree represent the individual elements of the array, and the parent nodes represent the union of their children.
- To answer a query [i, j], we traverse the segment tree from the root to the leaves, keeping track of the segments that contain i and j. At each node, we use the precomputed values to compute the number of elements in the segment that are less than or equal to x. We merge the values for the left and right child nodes and return the final result.
Implementation :
C++
// C++ program to count number of elements // with values in given range using segment tree #include <bits/stdc++.h> using namespace std; // Segment Tree class class SegmentTree { public : SegmentTree( int n) { tree.resize(4*n); } // build the tree with array elements void build( int arr[], int v, int tl, int tr) { if (tl == tr) { tree[v] = (arr[tl] >= low && arr[tl] <= high) ? 1 : 0; } else { int tm = (tl + tr) / 2; build(arr, v*2, tl, tm ); build(arr, v*2+1, tm +1, tr); tree[v] = tree[v*2] + tree[v*2+1]; } } // query the tree for given range int query( int v, int tl, int tr, int l, int r) { if (l > r) { return 0; } if (l == tl && r == tr) { return tree[v]; } int tm = (tl + tr) / 2; return query(v*2, tl, tm , l, min(r, tm )) + query(v*2+1, tm +1, tr, max(l, tm +1), r); } // update tree at index i with given value void update( int v, int tl, int tr, int i, int val) { if (tl == tr) { tree[v] = (val >= low && val <= high) ? 1 : 0; } else { int tm = (tl + tr) / 2; if (i <= tm ) { update(v*2, tl, tm , i, val); } else { update(v*2+1, tm +1, tr, i, val); } tree[v] = tree[v*2] + tree[v*2+1]; } } // set range for the tree void setRange( int l, int h) { low = l; high = h; } private : vector< int > tree; int low, high; }; // function to count elements within given range int countInRange( int arr[], int n, int x, int y) { SegmentTree st(n); st.setRange(x, y); st.build(arr, 1, 0, n-1); return st.query(1, 0, n-1, 0, n-1); } // driver function int main() { int arr[] = { 1, 3, 4, 9, 10, 3 }; int n = sizeof (arr) / sizeof (arr[0]); // Answer queries int i = 1, j = 4; cout << countInRange(arr, n, i, j) << endl; i = 9, j = 12; cout << countInRange(arr, n, i, j) << endl; return 0; } // this code is contributed by bhardwajji |
Java
import java.util.*; class SegmentTree { private List<Integer> tree; private int low, high; SegmentTree( int n) { tree = new ArrayList<>( 4 * n); for ( int i = 0 ; i < 4 * n; i++) { tree.add( 0 ); } } // build the tree with array elements void build( int [] arr, int v, int tl, int tr) { if (tl == tr) { tree.set(v, (arr[tl] >= low && arr[tl] <= high) ? 1 : 0 ); } else { int tm = (tl + tr) / 2 ; build(arr, v * 2 , tl, tm); build(arr, v * 2 + 1 , tm + 1 , tr); tree.set(v, tree.get(v * 2 ) + tree.get(v * 2 + 1 )); } } // query the tree for given range int query( int v, int tl, int tr, int l, int r) { if (l > r) { return 0 ; } if (l == tl && r == tr) { return tree.get(v); } int tm = (tl + tr) / 2 ; return query(v * 2 , tl, tm, l, Math.min(r, tm)) + query(v * 2 + 1 , tm + 1 , tr, Math.max(l, tm + 1 ), r); } // update tree at index i with given value void update( int v, int tl, int tr, int i, int val) { if (tl == tr) { tree.set(v, (val >= low && val <= high) ? 1 : 0 ); } else { int tm = (tl + tr) / 2 ; if (i <= tm) { update(v * 2 , tl, tm, i, val); } else { update(v * 2 + 1 , tm + 1 , tr, i, val); } tree.set(v, tree.get(v * 2 ) + tree.get(v * 2 + 1 )); } } // set range for the tree void setRange( int l, int h) { low = l; high = h; } } public class GFG { // function to count elements within given range static int countInRange( int [] arr, int n, int x, int y) { SegmentTree st = new SegmentTree(n); st.setRange(x, y); st.build(arr, 1 , 0 , n - 1 ); return st.query( 1 , 0 , n - 1 , 0 , n - 1 ); } // driver function public static void main(String[] args) { int [] arr = { 1 , 3 , 4 , 9 , 10 , 3 }; int n = arr.length; // Answer queries int i = 1 , j = 4 ; System.out.println(countInRange(arr, n, i, j)); i = 9 ; j = 12 ; System.out.println(countInRange(arr, n, i, j)); } } |
Python
# Python program to count number of elements # with values in given range using segment tree # Segment Tree class class SegmentTree: def __init__( self , n): self .tree = [ 0 ] * ( 4 * n) # build the tree with array elements def build( self , arr, v, tl, tr, low, high): if tl = = tr: self .tree[v] = 1 if low < = arr[tl] < = high else 0 else : tm = (tl + tr) / / 2 self .build(arr, v * 2 , tl, tm, low, high) self .build(arr, v * 2 + 1 , tm + 1 , tr, low, high) self .tree[v] = self .tree[v * 2 ] + self .tree[v * 2 + 1 ] # query the tree for given range def query( self , v, tl, tr, l, r): if l > r: return 0 if l = = tl and r = = tr: return self .tree[v] tm = (tl + tr) / / 2 return self .query(v * 2 , tl, tm, l, min (r, tm)) + \ self .query(v * 2 + 1 , tm + 1 , tr, max (l, tm + 1 ), r) # update tree at index i with given value def update( self , v, tl, tr, i, val, low, high): if tl = = tr: self .tree[v] = 1 if low < = val < = high else 0 else : tm = (tl + tr) / / 2 if i < = tm: self .update(v * 2 , tl, tm, i, val, low, high) else : self .update(v * 2 + 1 , tm + 1 , tr, i, val, low, high) self .tree[v] = self .tree[v * 2 ] + self .tree[v * 2 + 1 ] # set range for the tree def set_range( self , low, high): self .low = low self .high = high # function to count elements within given range def count_in_range(arr, n, x, y): st = SegmentTree(n) st.set_range(x, y) st.build(arr, 1 , 0 , n - 1 , x, y) return st.query( 1 , 0 , n - 1 , 0 , n - 1 ) # driver function if __name__ = = '__main__' : arr = [ 1 , 3 , 4 , 9 , 10 , 3 ] n = len (arr) # Answer queries i, j = 1 , 4 print (count_in_range(arr, n, i, j)) i, j = 9 , 12 print (count_in_range(arr, n, i, j)) |
C#
using System; public class SegmentTree { private int [] tree; private int low, high; public SegmentTree( int n) { tree = new int [4*n]; } public void Build( int [] arr, int v, int tl, int tr) { if (tl == tr) { tree[v] = (arr[tl] >= low && arr[tl] <= high) ? 1 : 0; } else { int tm = (tl + tr) / 2; Build(arr, v*2, tl, tm); Build(arr, v*2+1, tm+1, tr); tree[v] = tree[v*2] + tree[v*2+1]; } } public int Query( int v, int tl, int tr, int l, int r) { if (l > r) { return 0; } if (l == tl && r == tr) { return tree[v]; } int tm = (tl + tr) / 2; return Query(v*2, tl, tm, l, Math.Min(r, tm)) + Query(v*2+1, tm+1, tr, Math.Max(l, tm+1), r); } public void Update( int v, int tl, int tr, int i, int val) { if (tl == tr) { tree[v] = (val >= low && val <= high) ? 1 : 0; } else { int tm = (tl + tr) / 2; if (i <= tm) { Update(v*2, tl, tm, i, val); } else { Update(v*2+1, tm+1, tr, i, val); } tree[v] = tree[v*2] + tree[v*2+1]; } } public void SetRange( int l, int h) { low = l; high = h; } } public class Program { public static int CountInRange( int [] arr, int n, int x, int y) { SegmentTree st = new SegmentTree(n); st.SetRange(x, y); st.Build(arr, 1, 0, n-1); return st.Query(1, 0, n-1, 0, n-1); } public static void Main() { int [] arr = { 1, 3, 4, 9, 10, 3 }; int n = arr.Length; // Answer queries int i = 1, j = 4; Console.WriteLine(CountInRange(arr, n, i, j)); i = 9; j = 12; Console.WriteLine(CountInRange(arr, n, i, j)); } } |
4 2
Time Complexity: O(n log n)
Auxiliary Space: O(n)
An Efficient Approach will be to first sort the array and then using a modified binary search function find two indices, one of first element greater than or equal to lower bound of range and the other of the last element less than or equal to upperbound. Time for running each query will be O(logn) and for sorting the array once will be O(nlogn).
Implementation:
C++
// Efficient C++ program to count number of elements // with values in given range. #include <bits/stdc++.h> using namespace std; // function to find first index >= x int lowerIndex( int arr[], int n, int x) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] >= x) h = mid - 1; else l = mid + 1; } return l; } // function to find last index <= y int upperIndex( int arr[], int n, int y) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] <= y) l = mid + 1; else h = mid - 1; } return h; } // function to count elements within given range int countInRange( int arr[], int n, int x, int y) { // initialize result int count = 0; count = upperIndex(arr, n, y) - lowerIndex(arr, n, x) + 1; return count; } // driver function int main() { int arr[] = { 1, 4, 4, 9, 10, 3 }; int n = sizeof (arr) / sizeof (arr[0]); // Preprocess array sort(arr, arr + n); // Answer queries int i = 1, j = 4; cout << countInRange(arr, n, i, j) << endl; i = 9, j = 12; cout << countInRange(arr, n, i, j) << endl; return 0; } |
Java
// Efficient C++ program to count number // of elements with values in given range. import java.io.*; import java.util.Arrays; class GFG { // function to find first index >= x static int lowerIndex( int arr[], int n, int x) { int l = 0 , h = n - 1 ; while (l <= h) { int mid = (l + h) / 2 ; if (arr[mid] >= x) h = mid - 1 ; else l = mid + 1 ; } return l; } // function to find last index <= y static int upperIndex( int arr[], int n, int y) { int l = 0 , h = n - 1 ; while (l <= h) { int mid = (l + h) / 2 ; if (arr[mid] <= y) l = mid + 1 ; else h = mid - 1 ; } return h; } // function to count elements within given range static int countInRange( int arr[], int n, int x, int y) { // initialize result int count = 0 ; count = upperIndex(arr, n, y) - lowerIndex(arr, n, x) + 1 ; return count; } // Driver function public static void main (String[] args) { int arr[] = { 1 , 4 , 4 , 9 , 10 , 3 }; int n = arr.length; // Preprocess array Arrays.sort(arr); // Answer queries int i = 1 , j = 4 ; System.out.println( countInRange(arr, n, i, j)); ; i = 9 ; j = 12 ; System.out.println( countInRange(arr, n, i, j)); } } // This article is contributed by vt_m. |
Python3
# function to find first index >= x def lowerIndex(arr, n, x): l = 0 h = n - 1 while (l < = h): mid = int ((l + h) / / 2 ) if (arr[mid] > = x): h = mid - 1 else : l = mid + 1 return l # function to find last index <= x def upperIndex(arr, n, x): l = 0 h = n - 1 while (l < = h): mid = int ((l + h) / / 2 ) if (arr[mid] < = x): l = mid + 1 else : h = mid - 1 return h # function to count elements within given range def countInRange(arr, n, x, y): # initialize result count = 0 ; count = upperIndex(arr, n, y) - lowerIndex(arr, n, x) + 1 ; return count # driver function arr = [ 1 , 3 , 4 , 9 , 10 , 3 ] # Preprocess array arr.sort() n = len (arr) # Answer queries i = 1 j = 4 print (countInRange(arr, n, i, j)) i = 9 j = 12 print (countInRange(arr, n, i, j)) |
C#
// Efficient C# program to count number // of elements with values in given range. using System; class GFG { // function to find first index >= x static int lowerIndex( int []arr, int n, int x) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] >= x) h = mid - 1; else l = mid + 1; } return l; } // function to find last index <= y static int upperIndex( int []arr, int n, int y) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] <= y) l = mid + 1; else h = mid - 1; } return h; } // function to count elements // within given range static int countInRange( int []arr, int n, int x, int y) { // initialize result int count = 0; count = upperIndex(arr, n, y) - lowerIndex(arr, n, x) + 1; return count; } // Driver code public static void Main () { int []arr = {1, 4, 4, 9, 10, 3}; int n = arr.Length; // Preprocess array Array.Sort(arr); // Answer queries int i = 1, j = 4; Console.WriteLine(countInRange(arr, n, i, j)); ; i = 9; j = 12; Console.WriteLine(countInRange(arr, n, i, j)); } } // This code is contributed by vt_m. |
PHP
<?php // Efficient PHP program to count // number of elements with values // in given range. // function to find first index >= x function lowerIndex( $arr , $n , $x ) { $l = 0; $h = $n - 1; while ( $l <= $h ) { $mid = ( $l + $h ) / 2; if ( $arr [ $mid ] >= $x ) $h = $mid - 1; else $l = $mid + 1; } return $l ; } // function to find last index <= y function upperIndex( $arr , $n , $y ) { $l = 0; $h = $n - 1; while ( $l <= $h ) { $mid = ( $l + $h ) / 2; if ( $arr [ $mid ] <= $y ) $l = $mid + 1; else $h = $mid - 1; } return $h ; } // function to count elements // within given range function countInRange( $arr , $n , $x , $y ) { // initialize result $count = 0; $count = (upperIndex( $arr , $n , $y ) - lowerIndex( $arr , $n , $x ) + 1); $t = floor ( $count ); return $t ; } // Driver Code $arr = array ( 1, 4, 4, 9, 10, 3 ); $n = sizeof( $arr ); // Preprocess array sort( $arr ); // Answer queries $i = 1; $j = 4; echo countInRange( $arr , $n , $i , $j ), "\n" ; $i = 9; $j = 12; echo countInRange( $arr , $n , $i , $j ), "\n" ; // This code is contributed by Sachin ?> |
Javascript
<script> // Efficient Javascript program to count number // of elements with values in given range. // function to find first index >= x function lowerIndex(arr, n, x) { let l = 0, h = n - 1; while (l <= h) { let mid = parseInt((l + h) / 2, 10); if (arr[mid] >= x) h = mid - 1; else l = mid + 1; } return l; } // function to find last index <= y function upperIndex(arr, n, y) { let l = 0, h = n - 1; while (l <= h) { let mid = parseInt((l + h) / 2, 10); if (arr[mid] <= y) l = mid + 1; else h = mid - 1; } return h; } // function to count elements // within given range function countInRange(arr, n, x, y) { // initialize result let count = 0; count = upperIndex(arr, n, y) - lowerIndex(arr, n, x) + 1; return count; } let arr = [1, 4, 4, 9, 10, 3]; let n = arr.length; // Preprocess array arr.sort( function (a, b){ return a - b}); // Answer queries let i = 1, j = 4; document.write(countInRange(arr, n, i, j) + "</br>" ); ; i = 9; j = 12; document.write(countInRange(arr, n, i, j)); </script> |
4 2
Time Complexity: O(n log n),
Auxiliary Space: O(1)
This article is contributed by Aditi Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...