Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Python – Tukey-Lambda Distribution in Statistics

  • Last Updated : 23 Aug, 2021

scipy.stats.tukeylambda() is a Tukey-Lambda continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. 
Parameters : 
 

q : lower and upper tail probability 
x : quantiles 
loc : [optional]location parameter. Default = 0 
scale : [optional]scale parameter. Default = 1 
size : [tuple of ints, optional] shape or random variates. 
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : Tukey-Lambda continuous random variable 
 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Code #1 : Creating Tukey-Lambda continuous random variable 
 



Python3




# importing library
 
from scipy.stats import tukeylambda
   
numargs = tukeylambda .numargs
a, b = 0.2, 0.8
rv = tukeylambda (a, b)
   
print ("RV : \n", rv) 

Output : 
 

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D9D71F48

Code #2 : Tukey-Lambda continuous variates and probability distribution 
 

Python3




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = tukeylambda .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
 
# PDF
x = np.linspace(tukeylambda.ppf(0.01, a, b),
                tukeylambda.ppf(0.99, a, b), 10)
R = tukeylambda.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R)

Output : 
 

Random Variates : 
 [ 0.21772132 -0.22664155 -1.59857265  2.60861252  3.14751736  2.06655125
  0.62978366  0.28088051 -2.38894301 -1.16725442]

Probability Distribution : 
 [0.  0.  0.  0.  0.  0.  0.  0.5 0.5 0.5]

Code #3 : Graphical Representation. 
 

Python3




import numpy as np
import matplotlib.pyplot as plt
    
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
    
plot = plt.plot(distribution, rv.pdf(distribution))

Output : 
 

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

 

Code #4 : Varying Positional Arguments 
 

Python3




import matplotlib.pyplot as plt
import numpy as np
 
x = np.linspace(0, 5, 100)
    
# Varying positional arguments
y1 = tukeylambda.pdf(x, a, b)
y2 = tukeylambda.pdf(x, a, b)
plt.plot(x, y1, "*", x, y2, "r--")

Output : 
 

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :