Open In App
Related Articles

Python – Truncated Exponential Distribution in Statistics

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
scipy.stats.truncexpon() is a Truncated exponential continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters :
q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : Truncated exponential continuous random variable
Code #1 : Creating Truncated exponential continuous random variable
# importing library
  
from scipy.stats import truncexpon 
    
numargs = truncexpon .numargs 
a, b = 0.2, 0.8
rv = truncexpon (a, b) 
    
print ("RV : \n", rv)  

                    
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8
Code #2 : Truncated exponential continuous variates and probability distribution
import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = truncexpon .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(truncexpon.ppf(0.01, a, b),
                truncexpon.ppf(0.99, a, b), 10)
R = truncexpon.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

                    
Output :
Random Variates : 
 [0.99383084 0.95156024 0.93450076 0.84059197 0.8335949  0.87300784
 0.96239468 0.80531685 0.85103497 0.9930136 ]

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Code #3 : Graphical Representation.
import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 

                    
Output :
Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  
Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = truncexpon.pdf(x, a, b) 
y2 = truncexpon.pdf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

                    
Output :

Last Updated : 10 Jan, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads