# Python – Truncated Exponential Distribution in Statistics

scipy.stats.truncexpon() is a Truncated exponential continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters :
q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [â€˜mvskâ€™]; â€˜mâ€™ = mean, â€˜vâ€™ = variance, â€˜sâ€™ = Fisherâ€™s skew and â€˜kâ€™ = Fisherâ€™s kurtosis. (default = â€˜mvâ€™). Results : Truncated exponential continuous random variable
Code #1 : Creating Truncated exponential continuous random variable
 `# importing library `` ` `from` `scipy.stats ``import` `truncexpon  ``   ` `numargs ``=` `truncexpon .numargs  ``a, b ``=` `0.2``, ``0.8``rv ``=` `truncexpon (a, b)  ``   ` `print` `(``"RV : \n"``, rv)   `

Output :
```RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8
```
Code #2 : Truncated exponential continuous variates and probability distribution
 `import` `numpy as np  ``quantile ``=` `np.arange (``0.01``, ``1``, ``0.1``)  `` ` `# Random Variates  ``R ``=` `truncexpon .rvs(a, b, size ``=` `10``)  ``print` `(``"Random Variates : \n"``, R)  `` ` `# PDF  ``x ``=` `np.linspace(truncexpon.ppf(``0.01``, a, b), ``                ``truncexpon.ppf(``0.99``, a, b), ``10``) ``R ``=` `truncexpon.pdf(x, ``1``, ``3``) ``print` `(``"\nProbability Distribution : \n"``, R)  `

Output :
```Random Variates :
[0.99383084 0.95156024 0.93450076 0.84059197 0.8335949  0.87300784
0.96239468 0.80531685 0.85103497 0.9930136 ]

Probability Distribution :
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```
Code #3 : Graphical Representation.
 `import` `numpy as np  ``import` `matplotlib.pyplot as plt  ``    ` `distribution ``=` `np.linspace(``0``, np.minimum(rv.dist.b, ``3``))  ``print``(``"Distribution : \n"``, distribution)  ``    ` `plot ``=` `plt.plot(distribution, rv.pdf(distribution))  `

Output :
```Distribution :
[0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
1.95918367 2.        ]
```
Code #4 : Varying Positional Arguments
 `import` `matplotlib.pyplot as plt  ``import` `numpy as np  `` ` `x ``=` `np.linspace(``0``, ``5``, ``100``)  ``    ` `# Varying positional arguments  ``y1 ``=` `truncexpon.pdf(x, a, b)  ``y2 ``=` `truncexpon.pdf(x, a, b)  ``plt.plot(x, y1, ``"*"``, x, y2, ``"r--"``)  `

Output :

Previous
Next