Skip to content
Related Articles

Related Articles

Python – Truncated Exponential Distribution in Statistics

Improve Article
Save Article
  • Last Updated : 10 Jan, 2020
Improve Article
Save Article

scipy.stats.truncexpon() is a Truncated exponential continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Truncated exponential continuous random variable

Code #1 : Creating Truncated exponential continuous random variable




# importing library
  
from scipy.stats import truncexpon 
    
numargs = truncexpon .numargs 
a, b = 0.2, 0.8
rv = truncexpon (a, b) 
    
print ("RV : \n", rv)  

Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8

Code #2 : Truncated exponential continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = truncexpon .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(truncexpon.ppf(0.01, a, b),
                truncexpon.ppf(0.99, a, b), 10)
R = truncexpon.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

Output :

Random Variates : 
 [0.99383084 0.95156024 0.93450076 0.84059197 0.8335949  0.87300784
 0.96239468 0.80531685 0.85103497 0.9930136 ]

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 

Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = truncexpon.pdf(x, a, b) 
y2 = truncexpon.pdf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

Output :


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!