Skip to content
Related Articles

Related Articles

Python | Timing and Profiling the program
  • Last Updated : 12 Jun, 2019

Problems – To find where the program spends its time and make timing measurements.

To simply time the whole program, it’s usually easy enough to use something like the Unix time command as shown below.

Code #1 : Command to time the whole program




bash % time python3 someprogram.py
real 0m13.937s
user 0m12.162s
sys 0m0.098s
bash %

On the other extreme, to have a detailed report showing what the program is doing, cProfile module is used.




bash % python3 -m cProfile someprogram.py

Output :



Ordered by: standard name
    ncalls tottime percall cumtime percall filename:lineno(function)
    263169 0.080 0.000 0.080 0.000 someprogram.py:16(frange)
    513 0.001 0.000 0.002 0.000 someprogram.py:30(generate_mandel)
    262656 0.194 0.000 15.295 0.000 someprogram.py:32()
    1 0.036 0.036 16.077 16.077 someprogram.py:4()
    262144 15.021 0.000 15.021 0.000 someprogram.py:4(in_mandelbrot)
    1 0.000 0.000 0.000 0.000 os.py:746(urandom)
    1 0.000 0.000 0.000 0.000 png.py:1056(_readable)
    1 0.000 0.000 0.000 0.000 png.py:1073(Reader)
    1 0.227 0.227 0.438 0.438 png.py:163()
    512 0.010 0.000 0.010 0.000 png.py:200(group)

More often than not, profiling the code lies somewhere in between these two extremes. For example, if one already knows that the code spends most of its time in a few selected functions. For selected profiling of functions, a short decorator can be useful.
 
Code #3: Using short decorator for selected profiling of functions




# abc.py
  
import time
from functools import wraps
  
def timethis(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        r = func(*args, **kwargs)
        end = time.perf_counter()
        print('{}.{} : {}'.format(func.__module__, func.__name__, end - start))
        return r
    return wrapper

To use the decorator, simply place it in front of a function definition to get timings from it as shown in the code below.
Code #4 :




@abc
def countdown(n):
    while n > 0:
    n -= 1
  
countdown(10000000)

Output :

__main__.countdown : 0.803001880645752

Code #5: Defining a context manager to time a block of statements.




from contextlib import contextmanager
  
def timeblock(label):
    start = time.perf_counter()
    try:
        yield
    finally:
        end = time.perf_counter()
        print('{} : {}'.format(label, end - start))

Code #6: How the context manager works




with timeblock('counting'):
    n = 10000000
    while n > 0:
        n -= 1

Output :

counting : 1.5551159381866455

Code #7 : Using timeit module to study the performance of small code fragments




from timeit import timeit
print (timeit('math.sqrt(2)', 'import math'), "\n")
  
print (timeit('sqrt(2)', 'from math import sqrt'))

Output :

0.1432319980012835
0.10836604500218527

timeit works by executing the statement specified in the first argument a million times and measuring the time.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :