Skip to content
Related Articles

Related Articles

Python – tensorflow.raw_ops.Exp()

View Discussion
Improve Article
Save Article
  • Last Updated : 05 Jun, 2020

TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning  neural networks. TensorFlow raw_ops provides low level access to all TensorFlow operations. Exp() is used to find element wise exponential of x.

For complex numbers
e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y)


Syntax: tf.raw_ops.Exp(x, name)

Parameters: 

  • x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64, complex64, complex128. 
  • name(optional): It’s defines the name for the operation.
     

Returns:  It returns a tensor of same dtype as x.
 

Note: It only takes keyword arguments.

Example 1:

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
  
# Printing the input tensor
print('Input: ', a)
  
# Calculating exponential
res = tf.raw_ops.Exp(x = a)
  
# Printing the result
print('Result: ', res)

Output:

Input:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([  2.71828183   7.3890561   20.08553692  54.59815003 148.4131591 ], shape=(5, ), dtype=float64)


Example 2: Visualization

Python3




# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
  
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
  
# Calculating exponential
res = tf.raw_ops.Exp(x = a)
  
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Exp')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!