Skip to content
Related Articles

Related Articles

Improve Article

Python – tensorflow.math.l2_normalize()

  • Last Updated : 09 Jun, 2020
Geek Week

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

l2_normalize() is used to normalize a tensor along axis using L2 norm.

Syntax: tensorflow.math.l2_normalize( x, axis, epsilon, name)

Parameters:

  • x: It’s the input tensor. 
  • axis: It defines the dimension along which tensor will be normalized.
  • epsilon: It defines the lower bound value for norm. Default value is 1e-12. It uses sqrt(epsilon) as divisor if norm<sqrt(divisor).
  • name: An optional parameter that defines the name for the operation.

Returns:



It returns a tensor of same shape as x.

Example 1:

Python3




# Importing the libraray
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([7, 8, 13, 11], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
  
# Calculating the result
res = tf.math.l2_normalize(a)
  
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor([ 7.  8. 13. 11.], shape=(4, ), dtype=float64)
Result:  tf.Tensor([0.34869484 0.39850839 0.64757613 0.54794903], shape=(4, ), dtype=float64)


Example 2: This example uses 2-D tensor.

Python3




# Importing the libraray
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([[7, 8], [13, 11]], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
  
# Calculating the result
res = tf.math.l2_normalize(x = a, axis = 1)
  
# Printing the result
print('Result: ', res)

Output:

a:  tf.Tensor(
[[ 7.  8.]
 [13. 11.]], shape=(2, 2), dtype=float64)
Result:  tf.Tensor(
[[0.65850461 0.75257669]
 [0.76338629 0.64594224]], shape=(2, 2), dtype=float64)

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :