Related Articles

# Python – tensorflow.IndexedSlices.dense_shape Attribute

• Last Updated : 20 Jul, 2020

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

dense_shape returns a 1-D tensor containing the shape of the corresponding dense tensor.

Syntax: tensorflow.IndexedSlices.dense_shape

Returns: It returns a 1-D Tensor.

Example 1:

## Python3

 `# Importing the library``import` `tensorflow as tf`` ` `# Initializing the input``data ``=` `tf.constant([``1``, ``2``, ``3``])`` ` `# Printing the input``print``(``'data: '``, data)`` ` `# Calculating result``res ``=` `tf.IndexedSlices(data, [``0``], ``2``)`` ` `# Finding dense shape``dense ``=` `res.dense_shape`` ` `# Printing the result``print``(``'dense shape: '``, dense)`

Output:

```data:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
dense shape:  2

```

Example 2:

## Python3

 `# Importing the library``import` `tensorflow as tf`` ` `# Initializing the input``data ``=` `tf.constant([``1``, ``2``, ``3``])`` ` `# Printing the input``print``(``'data: '``, data)`` ` `# Calculating result``res ``=` `tf.IndexedSlices(data, [``0``])`` ` `# Finding dense shape``dense ``=` `res.dense_shape`` ` `# Printing the result``print``(``'dense shape: '``, dense)`

Output:

```data:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
dense shape:  None

```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up