Python – tensorflow.GradientTape()
TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
GradientTape() is used to record operations for automatic differentiation.
Syntax: tensorflow.GradientTape( persistent, watch_accessed_variables)
Parameters:
- persistent(optional): It can either be True or False with default value False. It defines whether persistent gradient tape is created or not.
- watch_accessed_variables: It is a boolean defining whether the tape will automatically watch any (trainable) variables accessed while the tape is active or not.
Example 1:
Python3
# Importing the library import tensorflow as tf x = tf.constant( 4.0 ) # Using GradientTape with tf.GradientTape() as gfg: gfg.watch(x) y = x * x * x # Computing gradient res = gfg.gradient(y, x) # Printing result print ( "res: " ,res) |
Output:
res: tf.Tensor(48.0, shape=(), dtype=float32)
Example 2:
Python3
# Importing the library import tensorflow as tf x = tf.constant( 4.0 ) # Using GradientTape with tf.GradientTape() as gfg: gfg.watch(x) # Using nested GradientTape for calculating higher order derivative with tf.GradientTape() as gg: gg.watch(x) y = x * x * x # Computing first order gradient first_order = gg.gradient(y, x) # Computing Second order gradient second_order = gfg.gradient(first_order, x) # Printing result print ( "first_order: " ,first_order) print ( "second_order: " ,second_order) |
Output:
first_order: tf.Tensor(48.0, shape=(), dtype=float32) second_order: tf.Tensor(24.0, shape=(), dtype=float32)
Please Login to comment...