Skip to content
Related Articles

Related Articles

Python | Tensorflow abs() method

Improve Article
Save Article
  • Last Updated : 07 Jan, 2022
Improve Article
Save Article

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks.

The module tensorflow.math provides support for many basic mathematical operations. Function tf.abs() [alias tf.math.abs] provides support for the absolute function in Tensorflow. It expects the input in form of complex numbers as  $a+bi$ or floating point numbers. The input type is tensor and if the input contains more than one element, an element-wise absolute value is computed.

For a complex number  $a+bi$ , the absolute value is computed as  \sqrt{a^2+b^2} .
For floating point numbers  $a$ , the absolute value is computed as  $a if $a>=0,  else -a. $

Syntax: tf.abs(x, name=None) or tf.math.abs(x, name=None)

Parameters:
x: A Tensor or SparseTensor of type float16, float32, float64, int32, int64, complex64 or complex128.
name (optional): The name for the operation.

Return type: A Tensor or SparseTensor with the same size and type as that of x with absolute values. For complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively.

Code #1: For Floating point numbers

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# A constant vector of size 5
a = tf.constant([-0.5, -0.1, 0, 0.1, 0.5], dtype = tf.float32)
  
# Applying the abs function and
# storing the result in 'b'
b = tf.abs(a, name ='abs')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))

Output:

Input type: Tensor("Const:0", shape=(5, ), dtype=float32)
Input : [-0.5 -0.1  0.   0.1  0.5]
Return Type : Tensor("abs:0", shape=(5, ), dtype=float32)
Output : [0.5 0.1 0.  0.1 0.5]

 

Code #2: Visualization

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# Importing the NumPy library
import numpy as np
  
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
  
# A vector of size 11 with values from -5 to 5
a = np.linspace(-5, 5, 11)
  
# Applying the absolute function and
# storing the result in 'b'
b = tf.abs(a, name ='abs')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input:', a)
    print('Output:', sess.run(b))
    plt.plot(a, sess.run(b), color = 'red', marker = "o"
    plt.title("tensorflow.abs"
    plt.xlabel("X"
    plt.ylabel("Y"
  
    plt.show()

Output:

Input: [-5. -4. -3. -2. -1.  0.  1.  2.  3.  4.  5.]
Output: [5. 4. 3. 2. 1. 0. 1. 2. 3. 4. 5.]

Code #3: For Complex Numbers

Python3




# Importing the Tensorflow library
import tensorflow as tf
  
# A constant vector of size 2
a = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]],
                              dtype = tf.complex64)
  
# Applying the abs function and
# storing the result in 'b'
b = tf.abs(a, name ='abs')
  
# Initiating a Tensorflow session
with tf.Session() as sess:
    print('Input type:', a)
    print('Input:', sess.run(a))
    print('Return type:', b)
    print('Output:', sess.run(b))

Output:

Input type: Tensor("Const_1:0", shape=(2, 1), dtype=complex64)
Input : [[-2.25+4.75j] [-3.25+5.75j]]
Return Type : Tensor("abs_1:0", shape=(2, 1), dtype=float32)
Output : [[5.255949 ] [6.6049223]]

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!