Related Articles

# Python | Tensorflow abs() method

• Last Updated : 10 Dec, 2018

Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks.

The module tensorflow.math provides support for many basic mathematical operations. Function tf.abs() [alias tf.math.abs] provides support for the absolute function in Tensorflow. It expects the input in form of complex numbers as or floating point numbers. The input type is tensor and if the input contains more than one element, an element-wise absolute value is computed.

For a complex number , the absolute value is computed as .
For floating point numbers , the absolute value is computed as Syntax: tf.abs(x, name=None) or tf.math.abs(x, name=None)

Parameters:
x: A Tensor or SparseTensor of type float16, float32, float64, int32, int64, complex64 or complex128.
name (optional): The name for the operation.

Return type: A Tensor or SparseTensor with the same size and type as that of x with absolute values. For complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively.

Code #1: For Floating point numbers

 # Importing the Tensorflow libraryimport tensorflow as tf  # A constant vector of size 5a = tf.constant([-0.5, -0.1, 0, 0.1, 0.5], dtype = tf.float32)  # Applying the abs function and# storing the result in 'b'b = tf.abs(a, name ='abs')  # Initiating a Tensorflow sessionwith tf.Session() as sess:    print('Input type:', a)    print('Input:', sess.run(a))    print('Return type:', b)    print('Output:', sess.run(b))

Output:

Input type: Tensor("Const:0", shape=(5, ), dtype=float32)
Input : [-0.5 -0.1  0.   0.1  0.5]
Return Type : Tensor("abs:0", shape=(5, ), dtype=float32)
Output : [0.5 0.1 0.  0.1 0.5]


Code #2: Visualization

 # Importing the Tensorflow libraryimport tensorflow as tf  # Importing the NumPy libraryimport numpy as np  # Importing the matplotlib.pylot functionimport matplotlib.pyplot as plt  # A vector of size 11 with values from -5 to 5a = np.linspace(-5, 5, 11)  # Applying the absolute function and# storing the result in 'b'b = tf.abs(a, name ='abs')  # Initiating a Tensorflow sessionwith tf.Session() as sess:    print('Input:', a)    print('Output:', sess.run(b))    plt.plot(a, sess.run(b), color = 'red', marker = "o")     plt.title("tensorflow.abs")     plt.xlabel("X")     plt.ylabel("Y")       plt.show()

Output:

Input: [-5. -4. -3. -2. -1.  0.  1.  2.  3.  4.  5.]
Output: [5. 4. 3. 2. 1. 0. 1. 2. 3. 4. 5.] Code #3: For Complex Numbers

 # Importing the Tensorflow libraryimport tensorflow as tf  # A constant vector of size 2a = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]],                              dtype = tf.complex64)  # Applying the abs function and# storing the result in 'b'b = tf.abs(a, name ='abs')  # Initiating a Tensorflow sessionwith tf.Session() as sess:    print('Input type:', a)    print('Input:', sess.run(a))    print('Return type:', b)    print('Output:', sess.run(b))

Output:

Input type: Tensor("Const_1:0", shape=(2, 1), dtype=complex64)
Input : [[-2.25+4.75j] [-3.25+5.75j]]
Return Type : Tensor("abs_1:0", shape=(2, 1), dtype=float32)
Output : [[5.255949 ] [6.6049223]]


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up