 Open in App
Not now

# Python | sympy.perfect_power() method

• Last Updated : 05 Sep, 2019

With the help of sympy.perfect_power() method, we can find two integers b and e such that be is equal to the given number n.

Syntax:
perfect_power(n)

Parameter:
n – It denotes an integer.

Returns:
Returns a tuple of integers (b, e) such that be == n.

Example #1:

 `# import perfect_power() method from sympy``from` `sympy ``import` `perfect_power`` ` `n ``=` `64`` ` `# Use perfect_power() method ``b, e ``=` `perfect_power(n) ``     ` `print``(``"n = {}"``.``format``(n))``print``(``"b = {} and e = {}."``.``format``(b, e))``print``(``"{}^{} == {}"``.``format``(b, e, n)) `

Output:

```n = 64
b = 2 and e = 6.
2^6 == 64
```

Example #2:

 `# import perfect_power() method from sympy``from` `sympy ``import` `perfect_power`` ` `n ``=` `64`` ` `# Use perfect_power() method ``b, e ``=` `perfect_power(n, big ``=` `False``) ``     ` `print``(``"n = {}"``.``format``(n))``print``(``"b = {} and e = {}."``.``format``(b, e))``print``(``"{}^{} == {}"``.``format``(b, e, n)) `

Output:

```n = 64
b = 8 and e = 2.
8^2 == 64
```
My Personal Notes arrow_drop_up