# Python | sympy.integrate() method

With the help of `sympy.integrate()` method, we can find the integration of mathematical expressions in the form of variables by using `sympy.integrate()` method.

Syntax : `sympy.integrate(expression, reference variable)`
Return : Return integration of mathematical expression.

Example #1 :
In this example we can see that by using `sympy.integrate()` method, we can find the integration of mathematical expression with variables. Here we use `symbols()` method also to declare a variable as symbol.

 `# import sympy ` `from` `sympy ``import` `*` `x, y ``=` `symbols(``'x y'``) ` `gfg_exp ``=` `sin(x)``*``exp(x) ` ` `  `print``(``"Before Integration : {}"``.``format``(gfg_exp)) ` ` `  `# Use sympy.integrate() method ` `intr ``=` `integrate(gfg_exp, x) ` ` `  `print``(``"After Integration : {}"``.``format``(intr)) `

Output :

Before Integration : exp(x)*sin(x)

After Integration : exp(x)*sin(x)/2 – exp(x)*cos(x)/2

Example #2 :

 `# import sympy ` `from` `sympy ``import` `*` `x, y ``=` `symbols(``'x y'``) ` `gfg_exp ``=` `sin(x)``*``tan(x) ` ` `  `print``(``"Before Integration : {}"``.``format``(gfg_exp)) ` ` `  `# Use sympy.integrate() method ` `intr ``=` `integrate(gfg_exp, x) ` ` `  `print``(``"After Integration : {}"``.``format``(intr)) `

Output :

Before Integration : sin(x)*tan(x)

After Integration : -log(sin(x) – 1)/2 + log(sin(x) + 1)/2 – sin(x)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.