With the help of sympy.fibonacci() method, we can find the Fibonacci number and Fibonacci polynomial in SymPy.
fibonacci(n) -
The Fibonacci numbers are the integer sequence defined by the initial terms
,
and the two-term recurrence relation
.
Syntax: fibonacci(n)
Parameter:
n – It denotes the number upto which Fibonacci number is to be calculated.
Returns: Returns the nth Fibonacci number.
Syntax: fibonacci(n)
Parameter:
n – It denotes the number upto which Fibonacci number is to be calculated.
Returns: Returns the nth Fibonacci number.
Example #1:
# import sympy from sympy import * n = 7 print ( "Value of n = {}" . format (n)) # Use sympy.fibonacci() method nth_fibonacci = fibonacci(n) print ( "Value of nth fibonacci number : {}" . format (nth_fibonacci)) |
Output:
Value of n = 7 Value of nth fibonacci number : 13
fibonacci(n, k) -
The Fibonacci polynomials are defined by ,
, and
for
. For all positive integers
,
.
Syntax: fibonacci(n, k)
Parameter:
n – It denotes the nth Fibonacci polynomial.
k – It denotes the variable in the Fibonacci polynomial.
Returns: Returns the the nth Fibonacci polynomial in k, Fn(k)
Example #2:
# import sympy from sympy import * n = 5 k = symbols( 'x' ) print ( "Value of n = {} and k = {}" . format (n, k)) # Use sympy.fibonacci() method nth_fibonacci_poly = fibonacci(n, k) print ( "The nth fibonacci polynomial : {}" . format (nth_fibonacci_poly)) |
Output:
Value of n = 5 and k = x The nth fibonacci polynomial : x**4 + 3*x**2 + 1
Example #3:
# import sympy from sympy import * n = 6 k = 3 print ( "Value of n = {} and k = {}" . format (n, k)) # Use sympy.fibonacci() method nth_fibonacci_poly = fibonacci(n, k) print ( "The nth fibonacci polynomial value : {}" . format (nth_fibonacci_poly)) |
Output:
Value of n = 6 and k = 3 The nth fibonacci polynomial value : 360
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.