Related Articles

# Python | sympy.eigenvals() method

• Last Updated : 29 Jun, 2019

With the help of `sympy.eigenvals()` method, we can find the eigenvalues of a matrix by using `sympy.eigenvals()` method.

Syntax : `sympy.eigenvals()`
Return : Return eigenvalues of a matrix.

Example #1 :
In this example, we can see that by using `sympy.eigenvals()` method, we are able to find the eigenvalues of a matrix.

 `# import sympy``from` `sympy ``import` `*`` ` `# Use sympy.eigenvals() method``mat ``=` `Matrix([[``1``, ``0``, ``1``], [``2``, ``-``1``, ``3``], [``4``, ``3``, ``2``]])``d ``=` `mat.eigenvals()``  ` `print``(d)`

Output :

{2/3 + 46/(9*(241/54 + sqrt(36807)*I/18)**(1/3)) + (241/54 + sqrt(36807)*I/18)**(1/3): 1, 2/3 + 46/(9*(-1/2 + sqrt(3)*I/2)*(241/54 + sqrt(36807)*I/18)**(1/3)) + (-1/2 + sqrt(3)*I/2)*(241/54 + sqrt(36807)*I/18)**(1/3): 1, 2/3 + (-1/2 – sqrt(3)*I/2)*(241/54 + sqrt(36807)*I/18)**(1/3) + 46/(9*(-1/2 – sqrt(3)*I/2)*(241/54 + sqrt(36807)*I/18)**(1/3)): 1}

Example #2 :

 `# import sympy``from` `sympy ``import` `*`` ` `# Use sympy.eigenvals() method``mat ``=` `Matrix([[``1``, ``5``, ``1``], [``12``, ``-``1``, ``31``], [``4``, ``33``, ``2``]])``d ``=` `mat.eigenvals()``  ` `print``(d)`

Output :

{2/3 + 3268/(9*(16225/54 + sqrt(15482600967)*I/18)**(1/3)) + (16225/54 + sqrt(15482600967)*I/18)**(1/3): 1, 2/3 + 3268/(9*(-1/2 + sqrt(3)*I/2)*(16225/54 + sqrt(15482600967)*I/18)**(1/3)) + (-1/2 + sqrt(3)*I/2)*(16225/54 + sqrt(15482600967)*I/18)**(1/3): 1, 2/3 + (-1/2 – sqrt(3)*I/2)*(16225/54 + sqrt(15482600967)*I/18)**(1/3) + 3268/(9*(-1/2 – sqrt(3)*I/2)*(16225/54 + sqrt(15482600967)*I/18)**(1/3)): 1}

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up