Related Articles

# Python | sympy.apart() method

• Last Updated : 25 Jun, 2019

With the help of sympy.apart() method, we can performs a partial fraction decomposition on a rational mathematical expression.

Syntax: apart(expression)

Parameters:
expression – It is a rational mathematical expression.

Returns: Returns an expression after the partial decomposition.

Example #1:
In this example we can see that by using sympy.apart() method, we can get a partial fraction decomposition of a given mathematical expression.

 `# import sympy``from` `sympy ``import` `*`` ` `x ``=` `symbols(``'x'``)``expr ``=` `(``4` `*` `x``*``*``3` `+` `21` `*` `x``*``*``2` `+` `10` `*` `x ``+` `12``) ``/` `(x``*``*``4` `+` `5` `*` `x``*``*``3` `+` `5` `*` `x``*``*``2` `+` `4` `*` `x)`` ` `print``(``"Mathematical expression : {}"``.``format``(expr))``   ` `# Use sympy.apart() method``pd ``=` `apart(expr) ``   ` `print``(``"After Partial Decomposition : {}"``.``format``(pd)) `

Output:

```Mathematical expression : (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
After Partial Decomposition : (2*x - 1)/(x**2 + x + 1) - 1/(x + 4) + 3/x
```

Example #2:

 `# import sympy``from` `sympy ``import` `*` ` ` `x ``=` `symbols(``'x'``)``expr ``=` `1``/``(x ``+` `3``)(x ``+` `2``)`` ` `print``(``"Mathematical expression : {}"``.``format``(expr))``   ` `# Use sympy.factor_list() method``pd ``=` `apart(expr) ``   ` `print``(``"After Partial Decomposition : {}"``.``format``(pd)) `

Output:

```Mathematical expression : 1/((x + 2)*(x + 3))
After Partial Decomposition : -1/(x + 3) + 1/(x + 2)
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up