Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Python – seaborn.regplot() method

  • Last Updated : 01 Aug, 2020

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps resolve the two major problems faced by Matplotlib; the problems are ?

  • Default Matplotlib parameters
  • Working with data frames

As Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half-way through Seaborn.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

seaborn.regplot() :

This method is used to plot data and a linear regression model fit. There are a number of mutually exclusive options for estimating the regression model. For more information click here.



Syntax : seaborn.regplot( x,  y,  data=None, x_estimator=None, x_bins=None,  x_ci=’ci’, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker=’o’,    scatter_kws=None, line_kws=None, ax=None)

Parameters: The description of some main parameters are given below:

  • x, y: These are Input variables. If strings, these should correspond with column names in “data”. When pandas objects are used, axes will be labeled with the series name.
  • data:  This is dataframe where each column is a variable and each row is an observation.
  • lowess: (optional) This parameter take boolean value. If “True”, use “statsmodels” to estimate a nonparametric lowess model (locally weighted linear regression).
  • color: (optional) Color to apply to all plot elements.
  • marker: (optional) Marker to use for the scatterplot glyphs.

Return: The Axes object containing the plot.

Below is the implementation of above method:

Example 1:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("mpg")
  
# draw regplot
sns.regplot(x = "mpg"
            y = "acceleration"
            data = data)
  
# show the plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output :



Example 2:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("titanic")
  
# draw regplot
sns.regplot(x = "age",
            y = "fare",
            data = data,
            dropna = True)
# show the plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output :

Example 3:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("exercise")
  
# draw regplot
sns.regplot(x = "id",
            y = "pulse"
            data = data)
  
# show the plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output :

Example 4 :

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("attention")
  
# draw regplot
sns.regplot(x = "solutions",
            y = "score",
            data = data)
  
# show ther plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output :




My Personal Notes arrow_drop_up
Recommended Articles
Page :