Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Python – seaborn.pairplot() method

  • Last Updated : 15 Jul, 2020

Prerequisite: Seaborn Programming Basics

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps resolve the two major problems faced by Matplotlib; the problems are ?

  • Default Matplotlib parameters
  • Working with data frames

As Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

seaborn.pairplot() :

To plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() function. This shows the relationship for (n, 2) combination of variable in a DataFrame as a matrix of plots and the diagonal plots are the univariate plots.



                        seaborn.pairplot( data, \*\*kwargs )

Seaborn.pairplot uses many arguments as input, main of which are described below in form of table:

Arguments                          DescriptionValue                                                                                                        
dataTidy (long-form) dataframe where each column is a variable and  each row is an observation.DataFrame
hueVariable in “data“ to map plot aspects to different colors.string (variable name), optional
paletteSet of colors for mapping the “hue“ variable. If a dict, keys should be values  in the “hue“ variable. vars : list of variable names, optionaldict or seaborn color palette
{x, y}_varsVariables within “data“ to use separately for the rows and columns of the figure; i.e. to make a non-square plot.lists of variable names, optional
dropnaDrop missing values from the data before plotting.boolean, optional

Below is the implementation of above method:

Example 1:

Python3




# importing packages
import seaborn
import matplotlib.pyplot as plt
  
############# Main Section ############
# loading dataset using seaborn
df = seaborn.load_dataset('tips')
# pairplot with hue sex
seaborn.pairplot(df, hue ='sex')
# to show
plt.show()
  
# This code is contributed by Deepanshu Rustagi.

 
 

Output :

Example 2:

 

Python3




# importing packages
import seaborn
import matplotlib.pyplot as plt
  
############# Main Section ############
# loading dataset using seaborn
df = seaborn.load_dataset('tips')
# pairplot with hue day
seaborn.pairplot(df, hue ='day')
# to show
plt.show()
  
# This code is contributed by Deepanshu Rustagi.

 
 

Output :

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :