Skip to content
Related Articles

Related Articles

Python – seaborn.jointplot() method

View Discussion
Improve Article
Save Article
  • Last Updated : 01 Aug, 2020
View Discussion
Improve Article
Save Article

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. Seaborn helps resolve the two major problems faced by Matplotlib; the problems are ?

  • Default Matplotlib parameters
  • Working with data frames

As Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half-way through Seaborn.

seaborn.jointplot() :

Draw a plot of two variables with bivariate and univariate graphs. This function provides a convenient interface to the ‘JointGrid’ class, with several canned plot kinds. This is intended to be a fairly lightweight wrapper; if you need more flexibility, you should use :class:’JointGrid’ directly.

Syntax: seaborn.jointplot(x,  y,  data=None, kind=’scatter’, stat_func=None, color=None, height=6, ratio=5, space=0.2, dropna=True,  xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs)

Parameters: The description of some main parameters are given below:

x, y: These parameters take Data or names of variables in “data”.

data: (optional) This parameter take DataFrame when “x” and “y” are variable names.

kind: (optional) This parameter take Kind of plot to draw.

color:  (optional) This parameter take Color used for the plot elements.

dropna: (optional) This parameter take boolean value, If True, remove observations that are missing from “x” and “y”.

Return: jointgrid object with the plot on it.

Below is the implementation of above method:

Example 1:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("attention")
  
# draw jointplot with
# hex kind
sns.jointplot(x = "solutions", y = "score",
              kind = "hex", data = data)
# show the plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output:

Example 2:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("mpg")
  
# draw jointplot with
# scatter kind
sns.jointplot(x = "mpg", y = "acceleration",
              kind = "scatter", data = data)
# show the plot
plt.show()
  
# This code is contributed
# by Deepanshu Rustagi.

Output:

Example 3:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("exercise")
  
# draw jointplot with
# kde kind
sns.jointplot(x = "id", y = "pulse",
              kind = "kde", data = data)
# Show the plot
plt.show()
  
# This code is contributed
# by Deepanshu Rustagi.

Output:

Example 4:

Python3




# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
  
# loading dataset
data = sns.load_dataset("titanic")
  
# draw jointplot with
# reg kind
sns.jointplot(x = "age", y = "fare",
              kind = "reg", data = data,
              dropna = True)
  
# show the plot
plt.show()
  
# This code is contributed 
# by Deepanshu Rustagi.

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!