Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Python – Scaling numbers column by column with Pandas

  • Last Updated : 25 Feb, 2021

Scaling numbers in machine learning is a common pre-processing technique to standardize the independent features present in the data in a fixed range. When applied to a Python sequence, such as a Pandas Series, scaling results in a new sequence such that your entire values in a column comes under a range. For example if the range is ( 0 ,1 ) your entire data within that column will be in the range 0,1 only. 

Example:

if the sequence is [1, 2, 3]
then the scaled sequence is [0, 0.5, 1]

Application:

  • In machine learning, scaling can improve the convergence speed of various algorithms.
  • Often in machine learning, you will come across data sets with a huge variation, and it will be difficult for many machine learning models well on that data so in that case scaling helps to keep the data within a range.

Note: We will be using Scikit-learn in this article to scale the pandas dataframe.

Steps:

  1. Import pandas and sklearn library in python.
  2. Call the DataFrame constructor to return a new DataFrame.
  3. Create an instance of sklearn.preprocessing.MinMaxScaler.
  4. Call sklearn.preprocessing.MinMaxScaler.fit_transform(df[[column_name]]) to return the Pandas DataFrame df from the first step with the specified column min-max scaled.

Example 1 : 

A very basic example of how MinMax

Python3




# importing the required libraries
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
  
# creating a dataframe for example
pd_data = pd.DataFrame({
    "Item": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    "Price": [100, 300, 250, 120, 910, 345, 124, 1000, 289, 500]
})
  
# Creating an instance of the sklearn.preprocessing.MinMaxScaler()
scaler = MinMaxScaler()
  
# Scaling the Price column of the created dataFrame and storing
# the result in ScaledPrice Column
pd_data[["ScaledPrice"]] = scaler.fit_transform(pd_data[["Price"]])
  
print(pd_data)

Output : 

Example 2 :  You can also scale more than one pandas, DataFrame’s column at a time, you just have to pass the column names in the MinMaxScaler.fit_transform() function.

Python3




# importing the required libraries
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
  
# creating a dataframe for example
pd_data = pd.DataFrame({
    "Item": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    "Price": [100, 300, 250, 120, 910, 345, 124, 1000, 289, 500],
    "Weight": [200, 203, 350, 100, 560, 456, 700, 250, 800, 389]
})
  
# Creating an instance of the sklearn.preprocessing.MinMaxScaler()
scaler = MinMaxScaler()
  
# Scaling the Price column of the created dataFrame and storing
# the result in ScaledPrice Column
pd_data[["ScaledPrice", "ScaledWeight"]] = scaler.fit_transform(
    pd_data[["Price", "Weight"]])
  
print(pd_data)

Output : 

Example 3: By default, the scale value used the class MinMaxScaler() is (0,1) but you can change it to any value you want as per your need.

Python3




# importing the required libraries
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
  
# creating a dataframe for example
pd_data = pd.DataFrame({
    "Item": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    "Price": [100, 300, 250, 120, 910, 345, 124, 1000, 289, 500]
})
  
# Creating an instance of the sklearn.preprocessing.MinMaxScaler()
# specifying the min and max value of the scale
scaler = MinMaxScaler(feature_range=(20, 500))
  
# Scaling the Price column of the created dataFrame
# and storing the result in ScaledPrice Column
pd_data[["ScaledPrice"]] = scaler.fit_transform(pd_data[["Price"]])
  
print(pd_data)

Output : 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!