Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Python – Pytorch permute() method

  • Last Updated : 18 Aug, 2020

PyTorch torch.permute() rearranges the original tensor according to the desired ordering and returns a new multidimensional rotated tensor. The size of the returned tensor remains the same as that of the original.

Syntax: torch.permute(*dims) 

Parameters:

  • dims: sequence of indices in desired ordering of dimensions Of the tensor (indexing starts from zero).

Return: tensor with desired ordering of dimensions.

Let’s see this concept with the help of few examples:

Example 1: Create a two-dimensional tensor of size 2 × 4 and then permuted.

Python3




# import pytorch library
import torch
  
# create a tensor of size 2 x 4
input_var = torch.randn(2,4)
  
# print size
print(input_var.size())
  
print(input_var)
  
# dimensions permuted
input_var = input_var.permute(1, 0)
  
# print size
print(input_var.size())
  
print(input_var)

Output:

torch.Size([2, 4])
tensor([[ 0.9801,  0.5296,  0.5449, -1.1481],
        [-0.6762, -0.1161,  0.6360, -0.5371]])
torch.Size([4, 2])
tensor([[ 0.9801, -0.6762],
        [ 0.5296, -0.1161],
        [ 0.5449,  0.6360],
        [-1.1481, -0.5371]])

Example 2: Create a Three-dimensional tensor of size 3 × 5 × 2 and then permuted.

Python3




# import pytorch library
import torch
  
# creating a tensor with random 
# values of dimension 3 X 5 X 2
input_var = torch.randn(3, 5, 2)
  
# print size
print(input_var.size())
  
print(input_var)
  
# dimensions permuted
input_var = input_var.permute(2, 0, 1)
  
# print size
print(input_var.size())
  
print(input_var)

Output:

torch.Size([3, 5, 2])
tensor([[[ 0.2059, -0.7165],
         [-1.1305,  0.5886],
         [-0.1247, -0.4969],
         [-0.5788,  0.0159],
         [ 1.4304,  0.6014]],

        [[ 2.4882, -0.3910],
         [-0.5558,  0.6903],
         [-0.4219, -0.5498],
         [-0.5346, -0.0703],
         [ 1.1497, -0.3252]],

        [[-0.5075,  0.5752],
         [ 1.3738, -0.3321],
         [-0.3317, -0.9209],
         [-1.6677, -1.1471],
         [-0.9269, -0.6493]]])
torch.Size([2, 3, 5])
tensor([[[ 0.2059, -1.1305, -0.1247, -0.5788,  1.4304],
         [ 2.4882, -0.5558, -0.4219, -0.5346,  1.1497],
         [-0.5075,  1.3738, -0.3317, -1.6677, -0.9269]],

        [[-0.7165,  0.5886, -0.4969,  0.0159,  0.6014],
         [-0.3910,  0.6903, -0.5498, -0.0703, -0.3252],
         [ 0.5752, -0.3321, -0.9209, -1.1471, -0.6493]]])

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!