Python – PyTorch log() method
PyTorch torch.log()
method gives a new tensor having the natural logarithm of the elements of input tensor.
Syntax:
torch.log(input, out=None)
Arguments
- input: This is input tensor.
- out: The output tensor.
Return: It returns a Tensor.
Let’s see this concept with the help of few examples:
Example 1:
Example 1:
# Importing the PyTorch library import torch # A constant tensor of size n a = torch.FloatTensor([ 5 , 6 , 7 , 4 ]) print (a) # Applying the log function and # storing the result in 'out' out = torch.log(a) print (out) |
Output:
5 6 7 4 [torch.FloatTensor of size 4] 1.6094 1.7918 1.9459 1.3863 [torch.FloatTensor of size 4]
Example 2:
# Importing the PyTorch library import torch # A constant tensor of size n a = torch.FloatTensor([ 1.45 , 2.3 , 10 ]) print (a) # Applying the log function and # storing the result in 'out' out = torch.log(a) print (out) |
Output:
1.4500 2.3000 10.0000 [torch.FloatTensor of size 3] 0.3716 0.8329 2.3026 [torch.FloatTensor of size 3]
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.