Open In App
Related Articles

Python | PyTorch asin() method

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

PyTorch is an open-source machine learning library developed by Facebook. It is used for deep neural network and natural language processing purposes.
The function torch.asin() provides support for the inverse sine function in PyTorch. It expects the input to be in the range [-1, 1] and gives the output in radian form. It returns nan if the input does not lie in the range [-1, 1]. The input type is tensor and if the input contains more than one element, element-wise inverse sine is computed.
 

Syntax: torch.asin(x, out=None)
Parameters
x: Input tensor 
name (optional): Output tensor
Return type: A tensor with the same type as that of x. 
 


Code #1: 
 

Python3

# Importing the PyTorch library
import torch
 
# A constant tensor of size 6
a = torch.FloatTensor([1.0, -0.5, 3.4, 0.2, 0.0, -2])
print(a)
 
# Applying the inverse sin function and
# storing the result in 'b'
b = torch.asin(a)
print(b)

                    

Output: 
 

tensor([ 1.0000, -0.5000,  3.4000,  0.2000,  0.0000, -2.0000])
tensor([ 1.5708, -0.5236,     nan,  0.2014,  0.0000,     nan])


 
Code #2: Visualization 
 

Python3

# Importing the PyTorch library
import torch
 
# Importing the NumPy library
import numpy as np
 
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
 
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
 
# Applying the inverse sine function and
# storing the result in 'b'
b = torch.asin(torch.FloatTensor(a))
 
print(b)
 
# Plotting
plt.plot(a, b.numpy(), color = 'red', marker = "o")
plt.title("torch.asin")
plt.xlabel("X")
plt.ylabel("Y")
 
plt.show()

                    

Output: 
 

tensor([-1.5708, -1.0297, -0.7956, -0.6082, -0.4429, -0.2898, -0.1433,  0.0000,
         0.1433,  0.2898,  0.4429,  0.6082,  0.7956,  1.0297,  1.5708])


 


 



Last Updated : 10 Nov, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads