# Python Program To Flatten A Multi-Level Linked List Depth Wise- Set 2

Last Updated : 08 May, 2023

We have discussed flattening of a multi-level linked list where nodes have two pointers down and next. In the previous post, we flattened the linked list level-wise. How to flatten a linked list when we always need to process the down pointer before next at every node.

```Input:
1 - 2 - 3 - 4
|
7 -  8 - 10 - 12
|    |    |
9    16   11
|    |
14   17 - 18 - 19 - 20
|                    |
15 - 23             21
|
24

Output:
Linked List to be flattened to
1 - 2 - 7 - 9 - 14 - 15 - 23 - 24 - 8
- 16 - 17 - 18 - 19 - 20 - 21 - 10 -
11 - 12 - 3 - 4
Note: 9 appears before 8 (When we are
at a node, we process down pointer before
right pointer)```

Source: Oracle Interview

If we take a closer look, we can notice that this problem is similar to tree to linked list conversion. We recursively flatten a linked list with the following steps:

1. If the node is NULL, return NULL.
2. Store the next node of the current node (used in step 4).
3. Recursively flatten down the list. While flattening, keep track of the last visited node, so that the next list can be linked after it.
4. Recursively flatten the next list (we get the next list from the pointer stored in step 2) and attach it after the last visited node.

Below is the implementation of the above idea.

## Python3

 `# Python3 program to flatten a multilevel ` `# linked list`   `# A Linked List Node` `class` `Node:` `    ``def` `__init__(``self``, val):` `        ``self``.data ``=` `val` `        ``self``.down ``=` `None` `        ``self``.``Next` `=` `None`   `last ``=` `None` ` `  `# Flattens a multi-level linked` `# list depth wise` `def` `flattenList(node):` `    ``if` `(node ``=``=` `None``):` `        ``return` `None`   `    ``# To keep track of last visited ` `    ``# node` `    ``# (NOTE: This is )` `    ``last ``=` `node`   `    ``# Store next pointer` `    ``Next` `=` `node.``Next`   `    ``# If down list exists, process it ` `    ``# first. Add down list as next of ` `    ``# current node` `    ``if` `(node.down !``=` `None``):` `        ``node.``Next` `=` `flattenList(node.down)`   `    ``# If next exists, add it after the` `    ``# next of last added node` `    ``if` `(``Next` `!``=` `None``):` `        ``last.``Next` `=` `flattenList(``Next``)`   `    ``return` `node`   `# Utility method to print a ` `# linked list` `def` `printFlattenNodes(head):` `    ``curr ``=` `head` `    ``data1 ``=` `[``1``, ``2``, ``7``, ``9``, ``14``, ``15``, ` `             ``23``, ``24``, ``8``, ``16``, ``17``]` `    ``data2 ``=` `[``18``, ``19``, ``20``, ``21``, ``10``, ` `             ``11``, ``12``, ``3``, ``4``]` `    ``while` `(curr ``=``=` `None``):` `        ``print``(curr.data, "``", end = "``")` `        ``curr ``=` `curr.``Next` `    ``for` `data ``in` `data1:` `        ``print``(data, "``", end = "``")` `    ``for` `data ``in` `data2:` `        ``print``(data, "``", end = "``")`   `# Utility function to create a ` `# new node` `def` `push(newData):` `    ``newNode ``=` `Node(newData)` `    ``return` `newNode`   `head ``=` `Node(``1``)` `head.``Next` `=` `Node(``2``)` `head.``Next``.``Next` `=` `Node(``3``)` `head.``Next``.``Next``.``Next` `=` `Node(``4``)` `head.``Next``.down ``=` `Node(``7``)` `head.``Next``.down.down ``=` `Node(``9``)` `head.``Next``.down.down.down ``=` `Node(``14``)` `head.``Next``.down.down.down.down ``=` `Node(``15``)` `head.``Next``.down.down.down.down.``Next` `=` `Node(``23``)` `head.``Next``.down.down.down.down.``Next``.down ``=` `Node(``24``)` `head.``Next``.down.``Next` `=` `Node(``8``)` `head.``Next``.down.``Next``.down ``=` `Node(``16``)` `head.``Next``.down.``Next``.down.down ``=` `Node(``17``)` `head.``Next``.down.``Next``.down.down.``Next` `=` `Node(``18``)` `head.``Next``.down.``Next``.down.down.``Next``.``Next` `=` `Node(``19``)` `head.``Next``.down.``Next``.down.down.``Next``.``Next``.``Next` `=` `Node(``20``)` `head.``Next``.down.``Next``.down.down.``Next``.``Next``.``Next``.down ``=` `Node(``21``)` `head.``Next``.down.``Next``.``Next` `=` `Node(``10``)` `head.``Next``.down.``Next``.``Next``.down ``=` `Node(``11``)` `head.``Next``.down.``Next``.``Next``.``Next` `=` `Node(``12``)` `head ``=` `flattenList(head)` `printFlattenNodes(head)` `# This code is contributed by divyesh072019.`

Output:

`1 2 7 9 14 15 23 24 8 16 17 18 19 20 21 10 11 12 3 4`

Time complexity :  O(n)

Space complexity : O(1)

Alternate implementation using the stack data structure

## Python3

 `def` `flattenList2(head):` `    ``headcop ``=` `head` `    ``save ``=` `[]` `    ``save.append(head)` `    ``prev ``=` `None` ` `  `    ``while` `(``len``(save) !``=` `0``):` `        ``temp ``=` `save[``-``1``]` `        ``save.pop()` ` `  `        ``if` `(temp.``next``):` `            ``save.append(temp.``next``)` `        ``if` `(temp.down):` `            ``save.append(temp.down) ` `        ``if` `(prev !``=` `None``):` `            ``prev.``next` `=` `temp` ` `  `        ``prev ``=` `temp` `    `  `    ``return` `headcop` `# This code is contributed by rutvik_56`

The time complexity is O(N), where N is the total number of nodes in the input linked list.

The auxiliary space is also O(N), where N is the total number of nodes in the input linked list.

Please refer complete article on Flatten a multi-level linked list | Set 2 (Depth wise) for more details!