Transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[][] is obtained by changing A[i][j] to A[j][i].

**For Square Matrix :**

The below program finds transpose of A[][] and stores the result in B[][], we can change N for different dimension.

`# Python3 Program to find ` `# transpose of a matrix ` ` ` `N ` `=` `4` ` ` `# This function stores ` `# transpose of A[][] in B[][] ` ` ` `def` `transpose(A,B): ` ` ` ` ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(N): ` ` ` `B[i][j] ` `=` `A[j][i] ` ` ` `# driver code ` `A ` `=` `[ [` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `2` `, ` `2` `, ` `2` `, ` `2` `], ` ` ` `[` `3` `, ` `3` `, ` `3` `, ` `3` `], ` ` ` `[` `4` `, ` `4` `, ` `4` `, ` `4` `]] ` ` ` ` ` `B ` `=` `A[:][:] ` `# To store result ` ` ` `transpose(A, B) ` ` ` `print` `(` `"Result matrix is"` `) ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(N): ` ` ` `print` `(B[i][j], ` `" "` `, end` `=` `'') ` ` ` `print` `() ` ` ` `# This code is contributed by Anant Agarwal. ` |

*chevron_right*

*filter_none*

**Output:**

Result matrix is 1 2 3 4 2 2 3 4 3 3 3 4 4 4 4 4

**For Rectangular Matrix :**

The below program finds transpose of A[][] and stores the result in B[][].

`# Python3 Program to find ` `# transpose of a matrix ` ` ` `M ` `=` `3` `N ` `=` `4` ` ` `# This function stores ` `# transpose of A[][] in B[][] ` ` ` `def` `transpose(A, B): ` ` ` ` ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(M): ` ` ` `B[i][j] ` `=` `A[j][i] ` ` ` `# driver code ` `A ` `=` `[ [` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `2` `, ` `2` `, ` `2` `, ` `2` `], ` ` ` `[` `3` `, ` `3` `, ` `3` `, ` `3` `]] ` ` ` ` ` `# To store result ` `B ` `=` `[[` `0` `for` `x ` `in` `range` `(M)] ` `for` `y ` `in` `range` `(N)] ` ` ` `transpose(A, B) ` ` ` `print` `(` `"Result matrix is"` `) ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(M): ` ` ` `print` `(B[i][j], ` `" "` `, end` `=` `'') ` ` ` `print` `() ` |

*chevron_right*

*filter_none*

**Output:**

Result matrix is 1 2 3 1 2 3 1 2 3 1 2 3

**In-Place for Square Matrix:**

`# Python3 Program to find ` `# transpose of a matrix ` ` ` `N ` `=` `4` ` ` `# Finds transpose of A[][] in-place ` `def` `transpose(A): ` ` ` ` ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(i` `+` `1` `, N): ` ` ` `A[i][j], A[j][i] ` `=` `A[j][i], A[i][j] ` ` ` `# driver code ` `A ` `=` `[ [` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `2` `, ` `2` `, ` `2` `, ` `2` `], ` ` ` `[` `3` `, ` `3` `, ` `3` `, ` `3` `], ` ` ` `[` `4` `, ` `4` `, ` `4` `, ` `4` `]] ` ` ` `transpose(A) ` ` ` `print` `(` `"Modified matrix is"` `) ` `for` `i ` `in` `range` `(N): ` ` ` `for` `j ` `in` `range` `(N): ` ` ` `print` `(A[i][j], ` `" "` `, end` `=` `'') ` ` ` `print` `() ` ` ` `# This code is contributed by Anant Agarwal. ` |

*chevron_right*

*filter_none*

**Output:**

Modified matrix is 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Please refer complete article on Program to find transpose of a matrix for more details!

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.