Python program to find middle of a linked list using one traversal
Given a singly linked list, find the middle of the linked list. Given a singly linked list, find the middle of the linked list. For example, if the given linked list is 1->2->3->4->5 then the output should be 3.
Method 1: Traverse the whole linked list and count the no. of nodes. Now traverse the list again till count/2 and return the node at count/2.
Python3
# Python program for the above approach class Node: def __init__( self , data): self .data = data self . next = None class NodeOperation: # Function to add a new node def pushNode( self , head_ref, data_val): # Allocate node and put in the data new_node = Node(data_val) # Link the old list of the new node new_node. next = head_ref # move the head to point to the new node head_ref = new_node return head_ref # A utility function to print a given linked list def printNode( self , head): while (head ! = None ): print ( '%d->' % head.data, end = "") head = head. next print ( "NULL" ) ''' Utility Function to find length of linked list ''' def getLen( self , head): temp = head len = 0 while (temp ! = None ): len + = 1 temp = temp. next return len def printMiddle( self , head): if head ! = None : # find length len = self .getLen(head) temp = head # traverse till we reached half of length midIdx = len / / 2 while midIdx ! = 0 : temp = temp. next midIdx - = 1 # temp will be storing middle element print ( 'The middle element is: ' , temp.data) # Driver Code head = None temp = NodeOperation() head = temp.pushNode(head, 5 ) head = temp.pushNode(head, 4 ) head = temp.pushNode(head, 3 ) head = temp.pushNode(head, 2 ) head = temp.pushNode(head, 1 ) temp.printNode(head) temp.printMiddle(head) # This code is contributed by Yash Agarwal |
1->2->3->4->5->NULL The middle element is: 3
Time Complexity: O(n) where n is no of nodes in linked list
Auxiliary Space: O(1)
Method 2: Traverse linked list using two pointers. Move one pointer by one and another pointer by two. When the fast pointer reaches the end slow pointer will reach middle of the linked list.
Implementation:
Python3
# Python 3 program to find the middle of a # given linked list # Node class class Node: # Function to initialise the node object def __init__( self , data): self .data = data self . next = None class LinkedList: def __init__( self ): self .head = None def push( self , new_data): new_node = Node(new_data) new_node. next = self .head self .head = new_node # Function to get the middle of # the linked list def printMiddle( self ): slow_ptr = self .head fast_ptr = self .head if self .head is not None : while (fast_ptr is not None and fast_ptr. next is not None ): fast_ptr = fast_ptr. next . next slow_ptr = slow_ptr. next print ( "The middle element is: " , slow_ptr.data) # Driver code list1 = LinkedList() list1.push( 5 ) list1.push( 4 ) list1.push( 2 ) list1.push( 3 ) list1.push( 1 ) list1.printMiddle() |
The middle element is: 2
Time Complexity: O(N) where N is the number of nodes in Linked List.
Auxiliary Space: O(1)
Method 3: Initialized the temp variable as head Initialized count to Zero Take loop till head will become Null(i.e end of the list) and increment the temp node when count is odd only, in this way temp will traverse till mid element and head will traverse all linked list. Print the data of temp.
Implementation:
Python3
# Python 3 program to find the middle of a # given linked list class Node: def __init__( self , value): self .data = value self . next = None class LinkedList: def __init__( self ): self .head = None # create Node and make linked list def push( self , new_data): new_node = Node(new_data) new_node. next = self .head self .head = new_node def printMiddle( self ): temp = self .head count = 0 while self .head: # only update when count is odd if (count & 1 ): temp = temp. next self .head = self .head. next # increment count in each iteration count + = 1 print (temp.data) # Driver code llist = LinkedList() llist.push( 1 ) llist.push( 20 ) llist.push( 100 ) llist.push( 15 ) llist.push( 35 ) llist.printMiddle() # code has been contributed by - Yogesh Joshi |
100
Complexity Analysis:
- Time complexity: O(N) where N is the size of the given linked list
- Auxiliary Space: O(1) because it is using constant space
METHOD 4:Using a list to store elements
APPROACH:
The above Python code implements a program that finds the middle element of a linked list using a single traversal. It defines two classes: Node and LinkedList. Node class has two instance variables: data and next. LinkedList class has an instance variable head which points to the first node of the linked list.
ALGORITHM:
1.Initialize a count variable to 0 and two pointers, middle_node, and current_node to the head of the linked list.
2.Traverse the linked list using current_node and increment the count variable by 1 in each iteration.
3.If the count variable is odd, move the middle_node pointer to the next node.
4.Return the data of the middle_node pointer as it points to the middle element.
Python3
class Node: def __init__( self , data): self .data = data self . next = None class LinkedList: def __init__( self ): self .head = None def insert( self , data): new_node = Node(data) if self .head is None : self .head = new_node else : current_node = self .head while current_node. next is not None : current_node = current_node. next current_node. next = new_node def print_list( self ): current_node = self .head while current_node is not None : print (current_node.data, end = "->" ) current_node = current_node. next print ( "NULL" ) def find_middle( self ): elements = [] current_node = self .head while current_node is not None : elements.append(current_node.data) current_node = current_node. next middle_index = len (elements) / / 2 return elements[middle_index] linked_list = LinkedList() linked_list.insert( 1 ) linked_list.insert( 2 ) linked_list.insert( 3 ) linked_list.insert( 4 ) linked_list.insert( 5 ) linked_list.print_list() middle = linked_list.find_middle() print ( "The middle element is:" , middle) |
1->2->3->4->5->NULL The middle element is: 3
Time complexity: O(n), where n is the number of nodes in the linked list. We traverse the linked list only once.
Space complexity: O(1). We use a constant amount of extra space to store pointers and variables.
Please Login to comment...