Python program to convert POS to SOP

Write a program in Python to convert standard POS(product of sums) form to standard SOP(sum of products) form.

Assumptions: The input POS expression is standard. The variables in POS expression are continuous i.e. if expression contains variable A then it will have variables B, C respectively and each Sum term contains the alphabets in sorted order i.e. A + B + C (not like B+A+C).

Examples:

 Input : (A + B + C).(A + B + C').(A + B' + C).(A' + B + C)
Output : A'BC + AB'C + ABC' + ABC

Input : (A + B).(A' + B')
Output : A'B + AB'

Approach:

  1. First of all convert each sum term to its equivalent binary form. For example, if (A+B+C’) then take 0 for uncomplement variable(A, B) and take 1 for complement variable(C) so binary conversion is 011) and then finally equivalent to its decimal form(for ex: 001 = 1) and store in a list.
  2. Now for SOP form take all those terms which are not present in the list formed in step 1st and then convert each term to binary and hence change to POS form. For example –
    Suppose 4 was not in the list then 5==> 101 (binary)
    Now, replace 0 by complement variables(B)
    replace 1 by uncomplement variables(A, C)
    101 ==> AB’C
    After each individual sum term use ‘+’
    ex: AB’C+AB’C’

Below is the Python implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to convert standard POS form 
# to standard SOP form 
  
# Function to calculate no. of variables 
# used in POS expression 
def count_no_alphabets(POS): 
    i = 0
    no_var = 0
  
    # As expression is standard so total no. 
    # of alphabets will be equal 
    # to alphabets before first '.' character 
    while (POS[i]!='.'): 
  
        # checking if character is alphabet      
        if (POS[i].isalpha()):   
            no_var+= 1
        i+= 1
    return no_var 
  
# Function to calculate the max terms in integers 
def Cal_Max_terms(Max_terms, POS): 
    a = "" 
    i = 0
    while (i<len(POS)): 
        if (POS[i]=='.'): 
  
            # converting binary to decimal               
            b = int(a, 2
  
            # insertion of each min term(integer) into the list              
            Max_terms.append(b) 
  
            # empty the string       
            a =""                        
            i+= 1
              
        elif(POS[i].isalpha()): 
  
            # checking whether variable is complemented or not 
            if(i + 1 != len(POS) and POS[i + 1]=="'"): 
  
                # concatenating the string with '0' 
                a += '1' 
  
                # incrementing by 2 because 1 for alphabet and 
                # another for "'"                       
                i += 2                          
            else
  
                # concatenating the string with '1' 
                a += '0'                        
                i += 1
        else
            i+= 1
  
    # insertion of last min term(integer) into the list  
    Max_terms.append(int(a, 2))      
  
# Function to calculate the min terms in binary then 
# calculate SOP form of POS 
def Cal_Min_terms(Max_terms, no_var, start_alphabet): 
  
    # declaration of the list 
    Min_terms =[] 
  
    # calculation of total no. of terms that can be 
    # formed by no_var variables                 
    max = 2**no_var              
    for i in range(0, max): 
  
        # checking whether the term is not 
        # present in the max terms 
        if (Max_terms.count(i)== 0): 
  
            # converting integer to binary and then 
            # taking the value from 2nd index as 1st 
            # two index contains '0b' 
            b = bin(i)[2:] 
  
            # loop used for inserting 0's before the 
            # binary value so that its length will be 
            # equal to no. of variables present in 
            # each product term      
            while(len(b)!= no_var): 
                b ='0'+
  
            # appending the max terms(integer) in the list 
            Min_terms.append(b)  
  
    SOP = "" 
  
    # loop till there are min terms                      
    for i in Min_terms: 
  
        # acquire the starting variable came from 
        # main function in every product term            
        value = start_alphabet 
  
        # loop till there are 0's or 1's in each min term    
        for j in i: 
  
            # checking for complement variable to be used                
            if (j =='0'): 
  
                # concatenating value, ' and + in string POS                 
                SOP = SOP + value+"'"
  
            # checking for uncomplement variable to be used  
            else
  
                # concatenating value and + in string POS                    
                SOP = SOP + value 
  
            # increment the alphabet by 1    
            value = chr(ord(value)+1
  
        # appending the SOP string by '+" after 
        # every product term                 
        SOP = SOP+ "+"
  
    # for discarding the extra '+' in the last               
    SOP = SOP[:-1]                       
    return SOP 
  
# main function 
def main(): 
      
    # input1 
    POS_expr ="(A+B+C).(A+B+C').(A+B'+C).(A'+B + C)"
    Max_terms = [] 
      
    no_var = count_no_alphabets(POS_expr) 
    Cal_Max_terms(Max_terms, POS_expr) 
    SOP_expr = Cal_Min_terms(Max_terms, no_var, POS_expr[1]) 
      
    print("Standard SOP form of " + POS_expr + " ==> " + SOP_expr) 
  
    # input2 
    POS_expr ="(A + B).(A'+B')"
    Max_terms = [] 
      
    no_var = count_no_alphabets(POS_expr) 
    Cal_Max_terms(Max_terms, POS_expr) 
    SOP_expr = Cal_Min_terms(Max_terms, no_var, POS_expr[1]) 
      
    print ("Standard SOP form of " + POS_expr + " ==> " + SOP_expr) 
  
# Driver code 
if __name__=="__main__"
    main() 

chevron_right


Output:

Standard SOP form of (A+B+C).(A+B+C').(A+B'+C).(A'+B + C)  ==>  A'BC+AB'C+ABC'+ABC
Standard SOP form of (A + B).(A'+B')  ==>  A'B+AB'


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.