Skip to content
Related Articles
Open in App
Not now

Related Articles

Python Program for Subset Sum Problem | DP-25

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 07 Jul, 2020
Improve Article
Save Article

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.
Example:

Input:  set[] = {3, 34, 4, 12, 5, 2}, sum = 9
Output:  True  //There is a subset (4, 5) with sum 9.

Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

Following is naive recursive implementation that simply follows the recursive structure mentioned above.

Python3




# A recursive solution for subset sum
# problem
  
# Returns true if there is a subset 
# of set[] with sun equal to given sum
def isSubsetSum(set, n, sum) :
    
    # Base Cases
    if (sum == 0) :
        return True
    if (n == 0 and sum != 0) :
        return False
   
    # If last element is greater than
    # sum, then ignore it
    if (set[n - 1] > sum) :
        return isSubsetSum(set, n - 1, sum);
   
    # else, check if sum can be obtained
    # by any of the following
    # (a) including the last element
    # (b) excluding the last element   
    return isSubsetSum(set, n-1, sum) or isSubsetSum(set, n-1, sum-set[n-1])
      
      
# Driver program to test above function
set = [3, 34, 4, 12, 5, 2]
sum = 9
n = len(set)
if (isSubsetSum(set, n, sum) == True) :
    print("Found a subset with given sum")
else :
    print("No subset with given sum")
      
# This code is contributed by Nikita Tiwari.

Output:

Found a subset with given sum

We can solve the problem in Pseudo-polynomial time using Dynamic programming.

Python3




# A Dynamic Programming solution for subset sum problem
# Returns true if there is a subset of 
# set[] with sun equal to given sum 
  
# Returns true if there is a subset of set[] 
# with sun equal to given sum
def isSubsetSum(set, n, sum):
      
    # The value of subset[i][j] will be 
    # true if there is a
    # subset of set[0..j-1] with sum equal to i
    subset =([[False for i in range(sum + 1)] 
            for i in range(n + 1)])
      
    # If sum is 0, then answer is true 
    for i in range(n + 1):
        subset[i][0] = True
          
        # If sum is not 0 and set is empty, 
        # then answer is false 
        for i in range(1, sum + 1):
            subset[0][i]= False
              
        # Fill the subset table in bottom up manner
        for i in range(1, n + 1):
            for j in range(1, sum + 1):
                if j<set[i-1]:
                    subset[i][j] = subset[i-1][j]
                if j>= set[i-1]:
                    subset[i][j] = (subset[i-1][j] or 
                                   subset[i - 1][j-set[i-1]])
      
        # uncomment this code to print table 
        # for i in range(n + 1):
        # for j in range(sum + 1):
        # print (subset[i][j], end =" ")
        # print()
    return subset[n][sum]
          
# Driver program to test above function
if __name__=='__main__':
    set = [3, 34, 4, 12, 5, 2]
    sum = 9
    n = len(set)
    if (isSubsetSum(set, n, sum) == True):
        print("Found a subset with given sum")
    else:
        print("No subset with given sum")
          
# This code is contributed by 
# sahil shelangia. 

Output:

Found a subset with given sum

Please refer complete article on Subset Sum Problem | DP-25 for more details!


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!