# Python program to add two Matrices

Aim : Program to compute the sum of two matrices and then print it in Python.

Examples:

Input : X= [[1,2,3], [4 ,5,6], [7 ,8,9]] Y = [[9,8,7], [6,5,4], [3,2,1]] Output : result= [[10,10,10], [10,10,10], [10,10,10]]

**We can perform matrix addition in following ways in Python.**

**Using for loop:**`# Program to add two matrices using nested loop`

`X`

`=`

`[[`

`1`

`,`

`2`

`,`

`3`

`],`

`[`

`4`

`,`

`5`

`,`

`6`

`],`

`[`

`7`

`,`

`8`

`,`

`9`

`]]`

`Y`

`=`

`[[`

`9`

`,`

`8`

`,`

`7`

`],`

`[`

`6`

`,`

`5`

`,`

`4`

`],`

`[`

`3`

`,`

`2`

`,`

`1`

`]]`

`result`

`=`

`[[`

`0`

`,`

`0`

`,`

`0`

`],`

`[`

`0`

`,`

`0`

`,`

`0`

`],`

`[`

`0`

`,`

`0`

`,`

`0`

`]]`

`# iterate through rows`

`for`

`i`

`in`

`range`

`(`

`len`

`(X)):`

`# iterate through columns`

`for`

`j`

`in`

`range`

`(`

`len`

`(X[`

`0`

`])):`

`result[i][j]`

`=`

`X[i][j]`

`+`

`Y[i][j]`

`for`

`r`

`in`

`result:`

`print`

`(r)`

*chevron_right**filter_none*Output:

[10, 10, 10] [10, 10, 10] [10, 10, 10]

**Explanation :-**

In this program we have used nested for loops to iterate through each row and each column. At each point we add the corresponding elements in the two matrices and store it in the result.**Using nested list comprehension :**In Python, we can implement a matrix as nested list (list inside a list). We can treat each element as a row of the matrix.`# Program to add two matrices`

`# using list comprehension`

`X`

`=`

`[[`

`1`

`,`

`2`

`,`

`3`

`],`

`[`

`4`

`,`

`5`

`,`

`6`

`],`

`[`

`7`

`,`

`8`

`,`

`9`

`]]`

`Y`

`=`

`[[`

`9`

`,`

`8`

`,`

`7`

`],`

`[`

`6`

`,`

`5`

`,`

`4`

`],`

`[`

`3`

`,`

`2`

`,`

`1`

`]]`

`result`

`=`

`[[X[i][j]`

`+`

`Y[i][j]`

`for`

`j`

`in`

`range`

`(`

`len`

`(X[`

`0`

`]))]`

`for`

`i`

`in`

`range`

`(`

`len`

`(X))]`

`for`

`r`

`in`

`result:`

`print`

`(r)`

*chevron_right**filter_none*Output:

[10, 10, 10] [10, 10, 10] [10, 10, 10]

**Explanation :-**

The output of this program is the same as above. We have used nested list comprehension to iterate through each element in the matrix. List comprehension allows us to write concise codes and we must try to use them frequently in Python. They are very helpful.**Using zip() and sum**`# Program to add two matrices`

`# using zip()`

`X`

`=`

`[[`

`1`

`,`

`2`

`,`

`3`

`],`

`[`

`4`

`,`

`5`

`,`

`6`

`],`

`[`

`7`

`,`

`8`

`,`

`9`

`]]`

`Y`

`=`

`[[`

`9`

`,`

`8`

`,`

`7`

`],`

`[`

`6`

`,`

`5`

`,`

`4`

`],`

`[`

`3`

`,`

`2`

`,`

`1`

`]]`

`result`

`=`

`[`

`map`

`(`

`sum`

`,`

`zip`

`(`

`*`

`t))`

`for`

`t`

`in`

`zip`

`(X, Y)]`

`print`

`(result)`

*chevron_right**filter_none*Output:

[[10, 10, 10], [10, 10, 10], [10, 10, 10]]

**Explanation :-**

The zip function accepts iterator i of each element(list) of matrix, mapping them, adding them using sum() and storing them in the map form.

This article is contributed by **ajay0007**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above..

## Recommended Posts:

- Python program to add two matrices
- Python program to multiply two matrices
- Python List Equality | Program to check if two given matrices are identical
- Program for subtraction of matrices
- Program for addition of two matrices
- Program to multiply two matrices
- Program to check if two given matrices are identical
- Multiplication of two Matrices in Single line using Numpy in Python
- XOR of XORs of all sub-matrices
- Different Operations on Matrices
- Count sub-matrices having sum divisible 'k'
- Find the intersection of two Matrices
- Kronecker Product of two matrices
- Count pairs from two sorted matrices with given sum
- Queries on number of Binary sub-matrices of Given size