Skip to content
Related Articles

Related Articles

Improve Article

Python | Pandas Series.replace()

  • Last Updated : 10 Feb, 2019

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.replace() function is used to replace values given in to_replace with value. The values of the Series are replaced with other values dynamically.

Syntax: Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’)

Parameter :
to_replace : How to find the values that will be replaced.
value : Value to replace any values matching to_replace with.
inplace : If True, in place.
limit : Maximum size gap to forward or backward fill.
regex : Whether to interpret to_replace and/or value as regular expressions
method : The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None.

Returns : Object after replacement.



Example #1: Use Series.replace() function to replace some values from the given Series object.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([10, 25, 3, 11, 24, 6])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

Output :

Now we will use Series.replace() function to replace the old values with the new ones.




# replace 3 by 1000
result = sr.replace(to_replace = 3, value = 1000)
  
# Print the result
print(result)

Output :


As we can see in the output, the Series.replace() function has successfully replaced the old value with the new one.
 
Example #2 : Use Series.replace() function to replace some values from the given Series object.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

Output :

Now we will use Series.replace() function to replace the old values with the new ones using a list.




# replace the old ones in the list with 
# the new values
result = sr.replace(to_replace = ['New York', 'Rio'], value = ['London', 'Brisbane'])
  
# Print the result
print(result)

Output :

As we can see in the output, the Series.replace() function has successfully replaced the old value with the new one using the list.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :