Python | Pandas Series.dt.strftime

Series.dt can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.strftime() function is used to convert to Index using specified date_format. The function return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library.

Syntax: Series.dt.strftime(*args, **kwargs)

Parameter :
date_format : Date format string (e.g. “%Y-%m-%d”)



Returns : Index of formatted strings

Example #1: Use Series.dt.strftime() function to convert the dates in the given series object to the specified date format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['2012-12-31 08:45', '2019-1-1 12:30', '2008-02-2 10:30',
               '2010-1-1 09:25', '2019-12-31 00:00'])
  
# Creating the index
idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']
  
# set the index
sr.index = idx
  
# Convert the underlying data to datetime 
sr = pd.to_datetime(sr)
  
# Print the series
print(sr)

chevron_right


Output :

Now we will use Series.dt.strftime() function to convert the dates in the given series object to the specified format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# convert to the given date format
result = sr.dt.strftime('% B % d, % Y, % r')
  
# print the result
print(result)

chevron_right


Output :

As we can see in the output, the Series.dt.strftime() function has successfully converted the dates in the given series object to the specified format.

Example #2 : Use Series.dt.strftime() function to convert the dates in the given series object to the specified date format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(pd.date_range('2012-12-31 09:45', periods = 5, freq = 'M',
                            tz = 'Asia / Calcutta'))
  
# Creating the index
idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']
  
# set the index
sr.index = idx
  
# Print the series
print(sr)

chevron_right


Output :


Now we will use Series.dt.strftime() function to convert the dates in the given series object to the specified format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# convert to the given date format
result = sr.dt.strftime('% d % m % Y, % r')
  
# print the result
print(result)

chevron_right


Output :

As we can see in the output, the Series.dt.strftime() function has successfully converted the dates in the given series object to the specified format.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.