Python | Pandas Series.dt.days_in_month
Series.dt
can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.days_in_month
attribute return the number of days in the month for the given series object.
Syntax: Series.dt.days_in_month
Parameter : None
Returns : numpy array
Example #1: Use Series.dt.days_in_month
attribute to find the number of days in the month of the given date in series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ '2012-12-31' , '2019-1-1 12:30' , '2008-02-2 10:30' , '2010-1-1 09:25' , '2019-12-31 00:00' ]) # Creating the index idx = [ 'Day 1' , 'Day 2' , 'Day 3' , 'Day 4' , 'Day 5' ] # set the index sr.index = idx # Convert the underlying data to datetime sr = pd.to_datetime(sr) # Print the series print (sr) |
Output :
Now we will use Series.dt.days_in_month
attribute to find the number of days in the month for the given date.
# find the number of # days in the month result = sr.dt.days_in_month # print the result print (result) |
Output :
As we can see in the output, the Series.dt.days_in_month
attribute has successfully accessed and returned the number of days in the month for the given date.
Example #2 : Use Series.dt.days_in_month
attribute to find the number of days in the month of the given date in series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series(pd.date_range( '2012-12-31 00:00' , periods = 5 , freq = 'D' )) # Creating the index idx = [ 'Day 1' , 'Day 2' , 'Day 3' , 'Day 4' , 'Day 5' ] # set the index sr.index = idx # Print the series print (sr) |
Output :
Now we will use Series.dt.days_in_month
attribute to find the number of days in the month for the given date.
# find the number of # days in the month result = sr.dt.days_in_month # print the result print (result) |
Output :
As we can see in the output, the Series.dt.days_in_month
attribute has successfully accessed and returned the number of days in the month for the given date.
Recommended Posts:
- Python | pandas.map()
- Python | Pandas Series.str.pad()
- Python | Pandas dataframe.ne()
- Python | Pandas dataframe.mod()
- Python | Pandas TimedeltaIndex.contains
- Python | Pandas Index.max()
- Python | Pandas.apply()
- Python | Pandas Index.min()
- Python | Pandas dataframe.mul()
- Python | Pandas Series.std()
- Python | Pandas dataframe.sub()
- Python | Pandas TimedeltaIndex.min
- Python | Pandas dataframe.sum()
- Python | Pandas dataframe.min()
- Python | Pandas TimedeltaIndex.max
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.