Skip to content
Related Articles

Related Articles

Python | Pandas Series.dt.ceil
  • Last Updated : 20 Mar, 2019

Series.dt can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.ceil() function perform ceil operation on the data to the specified freq.

Syntax: Series.dt.ceil(*args, **kwargs)

Parameter :
freq : The frequency level to ceil the index to

Returns : DatetimeIndex, TimedeltaIndex, or Series

Example #1: Use Series.dt.ceil() function to ceil the datetime data of the given series object to the specified frequency.






# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['2012-12-31 08:45', '2019-1-1 12:30', '2008-02-2 10:30',
               '2010-1-1 09:25', '2019-12-31 00:00'])
  
# Creating the index
idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']
  
# set the index
sr.index = idx
  
# Convert the underlying data to datetime 
sr = pd.to_datetime(sr)
  
# Print the series
print(sr)

Output :

Now we will use Series.dt.ceil() function to ceil the datetime values in the given series object to Daily frequency.




# ceil to daily frequency
result = sr.dt.ceil(freq = 'D')
  
# print the result
print(result)

Output :

As we can see in the output, the Series.dt.ceil() function has successfully ceiled the datetime values in the given series object to the specified frequency.

Example #2 : Use Series.dt.ceil() function to ceil the datetime data of the given series object to the specified frequency.




# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(pd.date_range('2012-12-31 09:45', periods = 5, freq = 'T',
                            tz = 'Asia / Calcutta'))
  
# Creating the index
idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']
  
# set the index
sr.index = idx
  
# Print the series
print(sr)

Output :



Now we will use Series.dt.ceil() function to ceil the datetime values in the given series object to Hourly frequency.




# ceil to hourly frequency
result = sr.dt.ceil(freq = 'H')
  
# print the result
print(result)

Output :

As we can see in the output, the Series.dt.ceil() function has successfully ceiled the datetime values in the given series object to the specified frequency.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :