Related Articles

Related Articles

Python | Pandas Series.aggregate()
  • Last Updated : 27 Feb, 2019

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.aggregate() function aggregate using one or more operations over the specified axis in the given series object.

Syntax: Series.aggregate(func, axis=0, *args, **kwargs)

Parameter :
func : Function to use for aggregating the data.
axis : Parameter needed for compatibility with DataFrame.
*args : Positional arguments to pass to func.
**kwargs : Keyword arguments to pass to func.

Returns : DataFrame, Series or scalar



Example #1: Use Series.aggregate() function to perform aggregation on the underlying data of the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([34, 5, 13, 32, 4, 15])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

chevron_right


Output :

Coca Cola    34
Sprite        5
Coke         13
Fanta        32
Dew           4
ThumbsUp     15
dtype: int64

Now we will use Series.aggregate() function to find the sum of all the values in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Find the sum of all values
result = sr.aggregate(func = sum)
  
# Print the result
print(result)

chevron_right


Output :

103

As we can see in the output, the Series.aggregate() function has successfully returned the sum of the underlying data of the given series object.
 
Example #2 : Use Series.aggregate() function to perform aggregation on the underlying data of the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([51, 10, 24, 18, 1, 84, 12, 10, 5, 24, 0])
  
# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

chevron_right


Output :

2010-12-31 08:45:00    51
2011-12-31 08:45:00    10
2012-12-31 08:45:00    24
2013-12-31 08:45:00    18
2014-12-31 08:45:00     1
2015-12-31 08:45:00    84
2016-12-31 08:45:00    12
2017-12-31 08:45:00    10
2018-12-31 08:45:00     5
2019-12-31 08:45:00    24
2020-12-31 08:45:00     0
Freq: A-DEC, dtype: int64

Now we will use Series.aggregate() function to find the maximum of all the values in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Find the max of all values
result = sr.aggregate(func = max)
  
# Print the result
print(result)

chevron_right


Output :

84

As we can see in the output, the Series.aggregate() function has successfully returned the maximum of all the values in the given series object.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :