Python | Pandas Series.add_suffix()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.add_suffix() function is used to add suffix at the end of the index labels in the given series object.

Syntax: Series.add_suffix(suffix)



Parameter :
suffix : The string to add after each label.

Returns : Series or DataFrame

Example #1: Use Series.add_suffix() function to add suffix at the end of each index labels in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([34, 5, 13, 32, 4, 15])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

chevron_right


Output :

Coca Cola    34
Sprite        5
Coke         13
Fanta        32
Dew           4
ThumbsUp     15
dtype: int64

Now we will use Series.add_suffix() function to add the suffix ‘_IPL 2019’ at the end of each index labels in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# add '_IPL 2019' to each index labels
result = sr.add_suffix(suffix = '_IPL 2019')
  
# Print the result
print(result)

chevron_right


Output :

Coca Cola_IPL 2019    34
Sprite_IPL 2019        5
Coke_IPL 2019         13
Fanta_IPL 2019        32
Dew_IPL 2019           4
ThumbsUp_IPL 2019     15
dtype: int64

As we can see in the output, the Series.add_suffix() function has successfully added the passed suffix at the end of each index labels in the given series object.
 
Example #2 : Use Series.add_suffix() function to add suffix at the end of each index labels in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([51, 10, 24, 18, 1, 84, 12, 10, 5, 24, 0])
  
# Create the Index
# apply yearly frequency
index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='Y')
  
# set the index
sr.index = index_
  
# Print the series
print(sr)

chevron_right


Output :

2010-12-31 08:45:00    51
2011-12-31 08:45:00    10
2012-12-31 08:45:00    24
2013-12-31 08:45:00    18
2014-12-31 08:45:00     1
2015-12-31 08:45:00    84
2016-12-31 08:45:00    12
2017-12-31 08:45:00    10
2018-12-31 08:45:00     5
2019-12-31 08:45:00    24
2020-12-31 08:45:00     0
Freq: A-DEC, dtype: int64

Now we will use Series.add_suffix() function to add the suffix ‘_Date’ at the end of each index labels in the given series object.

filter_none

edit
close

play_arrow

link
brightness_4
code

# add '_Date' to each index labels
result = sr.add_suffix(suffix = '_Date')
  
# Print the result
print(result)

chevron_right


Output :

2010-12-31 08:45:00_Date    51
2011-12-31 08:45:00_Date    10
2012-12-31 08:45:00_Date    24
2013-12-31 08:45:00_Date    18
2014-12-31 08:45:00_Date     1
2015-12-31 08:45:00_Date    84
2016-12-31 08:45:00_Date    12
2017-12-31 08:45:00_Date    10
2018-12-31 08:45:00_Date     5
2019-12-31 08:45:00_Date    24
2020-12-31 08:45:00_Date     0
dtype: int64

As we can see in the output, the Series.add_suffix() function has successfully added the passed suffix at the end of each index labels in the given series object.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.