Skip to content
Related Articles

Related Articles

Improve Article

Python | Pandas Panel.rmul()

  • Last Updated : 28 Jan, 2019

In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.

In Pandas Panel.rmul() function is used to get the multiplication of series and dataframe/Panel.

Syntax: Panel.rmul(other, axis=0)

Parameters:
other : DataFrame or Panel
axis : Axis to broadcast over

Returns: Panel



Code #1:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'real'], 
                    'b': [111, 123, 425, 1333]}) 
  
df2 = pd.DataFrame({'a': ['I', 'am', 'dataframe', 'two'], 
                    'b': [100, 100, 100, 100]}) 
                      
data = {'item1':df1, 'item2':df2}
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b']) 
  
print("\nMultiplying panel['b'] with df2['b'] using rmul() method - \n"
print("\n", panel['b'].rmul(df2['b'], axis = 0)) 
Output:
panel['b'] is - 

    item1  item2
0    111    100
1    123    100
2    425    100
3   1333    100

Multiplying panel['b'] with df2['b'] using rmul() method - 


     item1  item2
0   11100  10000
1   12300  10000
2   42500  10000
3  133300  10000

 

Code #2:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'], 
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
  
data = {'item1':df1, 'item2':df1} 
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b'], '\n'
  
# Create a 5 * 5 dataframe 
df2 = pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2']) 
print("Newly create dataframe with random values is - \n\n", df2)
  
print("\nMultiplying panel['b'] with df2 using rmul() method - \n"
print(panel['b'].rmul(df2, axis = 0)) 
Output:
panel['b'] is - 

       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 

Newly create dataframe with random values is - 

       item1     item2
0  0.549490  0.658451
1  0.321557  0.139482
2  0.010817  0.775445
3  0.011675  0.333828
4  0.818014  0.462602

Multiplying panel['b'] with df2 using rmul() method - 

         item1       item2
0     6.044385    7.242957
1     0.329596    0.142969
2     3.602168  258.223060
3     1.336504   38.216583
4  1090.412087  616.648529

 

Code #3:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'], 
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
                      
df2 = pd.DataFrame({'a': ['I', 'am', 'DataFrame', 'number', 'two'], 
                    'b': [10, 10, 10, 110, 110]})                     
                      
data = {'item1':df1, 'item2':df2} 
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
  
print("panel['b'] is - \n\n", panel['b'], '\n'
  
print("\nMultiplying panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rmul() method - \n"
print("\n", panel['b']['item1'].rmul(df2['b'], axis = 0)) 
Output:
panel['b'] is - 

       item1  item2
0    11.000     10
1     1.025     10
2   333.000     10
3   114.480    110
4  1333.000    110 


Multiplying panel['b']['item1'] with df2['b'] or panel['b']['item2'] using rmul() method - 


 0       110.00
1        10.25
2      3330.00
3     12592.80
4    146630.00
dtype: float64

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :