Python | Pandas Panel.radd()

In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.

In Pandas Panel.radd() function is used for element-wise addition of series and series/dataframe. It is equivalent to other + panel.

Syntax: Panel.radd(other, axis=0)



Parameters:
other : DataFrame or Panel
axis : Axis to broadcast over

Returns: Panel

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module  
import pandas as pd  
import numpy as np 
    
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'],  
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
                        
data = {'item1':df1, 'item2':df1} 
    
# creating Panel  
panel = pd.Panel.from_dict(data, orient ='minor'
    
print("panel['b'] is - \n\n", panel['b'], '\n'
    
print("\nAdding panel['b'] with df1['b'] using radd() method - \n")   
print("\n", panel['b'].radd(df1['b'], axis = 0)) 

chevron_right


Output:

panel['b'] is - 

       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 


Adding panel['b'] with df1['b'] using radd() method - 


      item1    item2
0    22.00    22.00
1     2.05     2.05
2   666.00   666.00
3   228.96   228.96
4  2666.00  2666.00

 

Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module  
import pandas as pd  
import numpy as np 
    
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'],  
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
    
data = {'item1':df1, 'item2':df1} 
    
# creating Panel  
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b'], '\n'
  
# Create a 5 * 5 dataframe 
df2 = pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2']) 
print("Newly create dataframe with random values is - \n\n", df2)
  
print("\nAdding panel['b'] with df2  using radd() method - \n")  
print(panel['b'].radd(df2, axis = 0)) 

chevron_right


Output:

panel['b'] is - 

       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 

Newly create dataframe with random values is - 

       item1     item2
0  0.584980  0.504366
1  0.730408  0.259226
2  0.255814  0.825562
3  0.459585  0.052188
4  0.197732  0.551450

Adding panel['b'] with df2  using radd() method - 

         item1        item2
0    11.584980    11.504366
1     1.755408     1.284226
2   333.255814   333.825562
3   114.939585   114.532188
4  1333.197732  1333.551450

 

Code #3:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'real'], 
                    'b': [-11, +1.025, -114.48, 1333]}) 
  
df2 = pd.DataFrame({'a': ['I', 'am', 'dataframe', 'two'], 
                    'b': [100, 100, 100, 100]}) 
                      
data = {'item1':df1, 'item2':df2}
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b']) 
  
print("\nAdding panel['b'] with df2['b'] using radd() method - \n")   
print("\n", panel['b'].radd(df2['b'], axis = 0)) 

chevron_right


Output:

panel['b'] is - 

       item1  item2
0   -11.000    100
1     1.025    100
2  -114.480    100
3  1333.000    100

Adding panel['b'] with df2['b'] using radd() method - 


       item1  item2
0    89.000    200
1   101.025    200
2   -14.480    200
3  1433.000    200

 



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.