Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Python | Pandas Panel.floordiv()

  • Last Updated : 28 Jan, 2019

In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.

In Pandas Panel.floordiv() function is used to get the integer division of series and dataframe/Panel.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: Panel.floordiv(other, axis=0)



Parameters:
other : DataFrame or Panel
axis : Axis to broadcast over

Returns: Panel

Code #1:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'real'], 
                    'b': [111, 123, 425, 1333]}) 
  
df2 = pd.DataFrame({'a': ['I', 'am', 'dataframe', 'two'], 
                    'b': [100, 100, 100, 100]}) 
                      
data = {'item1':df1, 'item2':df2}
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b']) 
  
print("\nInteger Dividing panel['b'] with df2['b'] using floordiv() method - \n"
print("\n", panel['b'].floordiv(df2['b'], axis = 0)) 
Output:
panel['b'] is - 

    item1  item2
0    111    100
1    123    100
2    425    100
3   1333    100

Integer Dividing panel['b'] with df2['b'] using floordiv() method - 


    item1  item2
0      1      1
1      1      1
2      4      1
3     13      1

 

Code #2:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'], 
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
  
data = {'item1':df1, 'item2':df1} 
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
print("panel['b'] is - \n\n", panel['b'], '\n'
  
# Create a 5 * 5 dataframe 
df2 = pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2']) 
print("Newly create dataframe with random values is - \n\n", df2)
  
print("\nInteger Dividing panel['b'] with df2 using floordiv() method - \n"
print(panel['b'].floordiv(df2, axis = 0)) 
Output:
panel['b'] is - 

       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 

Newly create dataframe with random values is - 

       item1     item2
0  0.346012  0.135318
1  0.850487  0.589151
2  0.074627  0.742770
3  0.296359  0.417620
4  0.216676  0.682704

Integer Dividing panel['b'] with df2 using floordiv() method - 

   item1  item2
0     31     81
1      1      1
2   4462    448
3    386    274
4   6152   1952

 

Code #3:




# importing pandas module 
import pandas as pd 
import numpy as np 
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'], 
                    'b': [11, 1.025, 333, 114.48, 1333]}) 
                      
df2 = pd.DataFrame({'a': ['I', 'am', 'DataFrame', 'number', 'two'], 
                    'b': [10, 10, 10, 110, 110]})                     
                      
data = {'item1':df1, 'item2':df2} 
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor'
  
print("panel['b'] is - \n\n", panel['b'], '\n'
  
print("\nInteger Dividing panel['b']['item1'] with df2['b'] or panel['b']['item2'] using floordiv() method - \n"
print("\n", panel['b']['item1'].floordiv(df2['b'], axis = 0)) 
Output:
panel['b'] is - 

       item1  item2
0    11.000     10
1     1.025     10
2   333.000     10
3   114.480    110
4  1333.000    110 


Integer Dividing panel['b']['item1'] with df2['b'] or panel['b']['item2'] using floordiv() method - 


 0     1
1     0
2    33
3     1
4    12
dtype: float64

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!