Skip to content
Related Articles

Related Articles

Improve Article

Python | Pandas Panel.clip_lower()

  • Last Updated : 01 Jan, 2019

In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.

Panel.clip_lower() function is used to return copy of the input with values below a threshold truncated.

Syntax: Panel.clip_lower(threshold, axis=None, inplace=False)

Parameters:
threshold : Minimum value allowed. All values below threshold will be set to this value.
float : every value is compared to threshold.
array-like : The shape of threshold should match the object it’s compared to.
axis : Align self with threshold along the given axis.
inplace : Whether to perform the operation in place on the data.

Returns: same type as input.



Code #1: Creating a Panel using from_dict()




# importing pandas module 
import pandas as pd 
import numpy as np
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks'], 
                    'b': np.random.randn(3)})
                      
data = {'item1':df1, 'item2':df1}
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor')
print(panel, "\n")

Output:

 

Code #2: Using clip_lower()




# importing pandas module 
import pandas as pd 
import numpy as np
  
df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks'], 
                    'b': np.random.randn(3)})
                      
data = {'item1':df1, 'item2':df1}
  
# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor')
print(panel, "\n")
print(panel['b'], '\n')
  
  
df2 = pd.DataFrame({'b': [11, 12, 13]})
print(panel['b'].clip_lower(df2['b'], axis = 0))

Output:

 

Code #3:




# creating an empty panel
import pandas as pd
import numpy as np
  
data = {'Item1' : pd.DataFrame(np.random.randn(7, 4)), 
        'Item2' : pd.DataFrame(np.random.randn(4, 5))}
          
pen = pd.Panel(data)
print(pen['Item1'], '\n')
  
p = pen['Item1'][0].clip_lower(np.random.randn(7))
print(p)

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :