Python | Pandas MultiIndex.from_arrays()
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas MultiIndex.from_arrays()
function is used to convert arrays into MultiIndex. It is one of the several ways in which we construct a MultiIndex.
Syntax: MultiIndex.from_arrays(arrays, sortorder=None, names=None)
Parameters :
arrays : Each array-like gives one level’s value for each data point. len(arrays) is the number of levels
sortorder : Level of sortedness (must be lexicographically sorted by that level)Returns: index : MultiIndex
Example #1: Use MultiIndex.from_arrays()
function to construct a MultiIndex from arrays.
# importing pandas as pd import pandas as pd # Creating the array array = [[ 1 , 2 , 3 ], [ 'Sharon' , 'Nick' , 'Bailey' ]] # Print the array print (array) |
Output :
Now let’s create the MultiIndex using this array
# Creating the MultiIndex midx = pd.MultiIndex.from_arrays(array, names = ( 'Number' , 'Names' )) # Print the MultiIndex print (midx) |
Output :
As we can see in the output, the function has created a MultiIndex object using the arrays.
Example #2: Use MultiIndex.from_arrays()
function to construct a MultiIndex from arrays.
# importing pandas as pd import pandas as pd # Creating the array array = [[ 1 , 2 , 3 ], [ 'Sharon' , 'Nick' , 'Bailey' ], [ 'Doctor' , 'Scientist' , 'Physicist' ]] # Print the array print (array) |
Output :
Now let’s create the MultiIndex using this array
# Creating the MultiIndex midx = pd.MultiIndex.from_arrays(array, names = ( 'Ranking' , 'Names' , 'Profession' )) # Print the MultiIndex print (midx) |
Output :
As we can see in the output, the function has created a MultiIndex using the passed arrays.
Recommended Posts:
- Python | pandas.map()
- Python | Pandas Series.agg()
- Python | Pandas dataframe.mean()
- Python | Pandas dataframe.max()
- Python | Pandas Series.dt.tz
- Python | Pandas.CategoricalDtype()
- Python | Pandas dataframe.div()
- Python | Pandas Index.min()
- Python | Pandas Index.max()
- Python | Pandas.Categorical()
- Python | Pandas Index.where
- Python | Pandas dataframe.get()
- Python | Pandas Index.all()
- Python | Pandas Index.any()
- Python | Pandas dataframe.mad()
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.