Python | Pandas DataFrame.values

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.values attribute return a Numpy representation of the given DataFrame.

Syntax: DataFrame.values

Parameter : None

Returns : array



Example #1: Use DataFrame.values attribute to return the numpy representation of the given DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
  
# Print the DataFrame
print(df)
chevron_right

Output :

Now we will use DataFrame.values attribute to return the numpy representation of the given DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# return the numpy representation of 
# this dataframe
result = df.values
  
# Print the result
print(result)
chevron_right

Output :


As we can see in the output, the DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.
 
Example #2: Use DataFrame.values attribute to return the numpy representation of the given DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1], 
                   "B":[7, 2, 54, 3, None], 
                   "C":[20, 16, 11, 3, 8], 
                   "D":[14, 3, None, 2, 6]}) 
  
# Print the DataFrame
print(df)
chevron_right

Output :

Now we will use DataFrame.values attribute to return the numpy representation of the given DataFrame.

filter_none

edit
close

play_arrow

link
brightness_4
code

# return the numpy representation of 
# this dataframe
result = df.values
  
# Print the result
print(result)
chevron_right

Output :

As we can see in the output, the DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




Article Tags :