Python | Pandas DataFrame.truncate

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.

Pandas DataFrame.truncate() function is used to truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.

Syntax: DataFrame.truncate(before=None, after=None, axis=None, copy=True)

Parameter :
before : Truncate all rows before this index value.
after : Truncate all rows after this index value.
axis : Axis to truncate. Truncates the index (rows) by default.
copy : Return a copy of the truncated section.

Returns : The truncated Series or DataFrame.



Example #1: Use DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
                   'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age':[14, 25, 55, 8, 21]})
  
# Create the index
index_ = pd.date_range('2010-10-09 08:45', periods = 5, freq ='H')
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)

chevron_right


Output :

Now we will use DataFrame.truncate() function to truncate the entries before ‘2010-10-09 09:45:00’ and after ‘2010-10-09 11:45:00’ in the given dataframe.

filter_none

edit
close

play_arrow

link
brightness_4
code

# return the truncated dataframe
result = df.truncate(before = '2010-10-09 09:45:00', after = '2010-10-09 11:45:00')
  
# Print the result
print(result)

chevron_right


Output :

As we can see in the output, the DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.
 
Example #2: Use DataFrame.truncate() function to truncate some entries before and after the passed labels of the given dataframe.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1], 
                   "B":[7, 2, 54, 3, None], 
                   "C":[20, 16, 11, 3, 8], 
                   "D":[14, 3, None, 2, 6]}) 
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)

chevron_right


Output :



Now we will use DataFrame.truncate() function to truncate the entries before ‘Row_3’ and after ‘Row_4’ in the given dataframe.

filter_none

edit
close

play_arrow

link
brightness_4
code

# return the truncated dataframe
result = df.truncate(before = 'Row_3', after = 'Row_4')
  
# Print the result
print(result)

chevron_right


Output :

As we can see in the output, the DataFrame.truncate() function has successfully truncated the entries before and after the passed labels in the given dataframe.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.