Python | Pandas dataframe.rmul()
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.rmul() function is used for finding the multiplication of dataframe and other, element-wise (binary operator rfloordiv). This function is essentially same as doing other * dataframe but with a support to substitute for missing data in one of the inputs.
Syntax:DataFrame.rmul(other, axis=’columns’, level=None, fill_value=None)
Parameters :
other : Series, DataFrame, or constant
axis : For Series input, axis to match Series index on
level : Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing
Returns : result : DataFrame
Example #1: Use rmul() function to find the multiplication of a series with a dataframe.
Python3
# importing pandas as pd import pandas as pd # Creating the dataframe df = pd.DataFrame({ "A" :[ 1 , 5 , 3 , 4 , 2 ], "B" :[ 3 , 2 , 4 , 3 , 4 ], "C" :[ 2 , 2 , 7 , 3 , 4 ], "D" :[ 4 , 3 , 6 , 12 , 7 ]}, index = [ "A1" , "A2" , "A3" , "A4" , "A5" ]) # Print the dataframe df |
Let’s create the series
Python3
# importing pandas as pd import pandas as pd # Create the series sr = pd.Series([ 12 , 25 , 64 , 18 ], index = [ "A" , "B" , "C" , "D" ]) # Print the series sr |
Lets use the dataframe.rmul() function to find the multiplication of a series with dataframe
Python3
df.rmul(sr, axis = 1 ) |
Output :
Example #2: Use rmul() function to perform multiplication of a dataframe with other.
Python3
# importing pandas as pd import pandas as pd # Creating the first dataframe df1 = pd.DataFrame({ "A" :[ 1 , 5 , 3 , 4 , 2 ], "B" :[ 3 , 2 , 4 , 3 , 4 ], "C" :[ 2 , 2 , 7 , 3 , 4 ], "D" :[ 4 , 3 , 6 , 12 , 7 ]}, index = [ "A1" , "A2" , "A3" , "A4" , "A5" ]) # Creating the second dataframe df2 = pd.DataFrame({ "A" :[ 10 , 11 , 7 , 8 , 5 ], "B" :[ 21 , 5 , 32 , 4 , 6 ], "C" :[ 11 , 21 , 23 , 7 , 9 ], "D" :[ 1 , 5 , 3 , 8 , 6 ]}, index = [ "A1" , "A2" , "A3" , "A4" , "A5" ]) # Print the first dataframe print (df1) # Print the second dataframe print (df2) |
Lets perform df2 * df1
Python3
# perform multiplication of df2 with df1 df1.rmul(df2) |
Output :
Please Login to comment...