Skip to content
Related Articles

Related Articles

Python | Pandas dataframe.quantile()
  • Difficulty Level : Hard
  • Last Updated : 22 Nov, 2018

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.quantile() function return values at the given quantile over requested axis, a numpy.percentile.

Note : In each of any set of values of a variate which divide a frequency distribution into equal groups, each containing the same fraction of the total population.

Syntax: DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’)

Parameters :
q : float or array-like, default 0.5 (50% quantile). 0 <= q <= 1, the quantile(s) to compute
axis : [{0, 1, ‘index’, ‘columns’} (default 0)] 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
numeric_only : If False, the quantile of datetime and timedelta data will be computed as well
interpolatoin : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}



Returns : quantiles : Series or DataFrame
-> If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
-> If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Example #1: Use quantile() function to find the value of “.2” quantile




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                   "B":[3, 2, 4, 3, 4],
                   "C":[2, 2, 7, 3, 4], 
                   "D":[4, 3, 6, 12, 7]})
  
# Print the dataframe
df

Let’s use the dataframe.quantile() function to find the quantile of ‘.2’ for each column in the dataframe




# find the product over the index axis
df.quantile(.2, axis = 0)

Output :

Example #2: Use quantile() function to find the (.1, .25, .5, .75) qunatiles along the index axis.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                   "B":[3, 2, 4, 3, 4],
                   "C":[2, 2, 7, 3, 4],
                   "D":[4, 3, 6, 12, 7]})
  
# using quantile() function to
# find the quantiles over the index axis
df.quantile([.1, .25, .5, .75], axis = 0)

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :