Python | Pandas dataframe.product()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.product() function return the value of the product for the requested axis. It multiplies all the element together on the requested axis. By default the index axis is selected.

Syntax: DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)

Parameters :
axis : {index (0), columns (1)}
skipna : Exclude NA/null values when computing the result.
level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
min_count : The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

Returns : prod : Series or DataFrame (if level specified)

Example #1: Use product() function to find product of all the elements over the column axis in the dataframe.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe 
df = pd.DataFrame({"A":[1, 5, 3, 4, 2], 
                   "B":[3, 2, 4, 3, 4], 
                   "C":[2, 2, 7, 3, 4], 
                   "D":[4, 3, 6, 12, 7]})
  
# Print the dataframe
df

chevron_right


Let’s use the dataframe.product() function to find the product of each element in the dataframe over the column axis.

filter_none

edit
close

play_arrow

link
brightness_4
code

# find the product over the column axis
df.product(axis = 1)

chevron_right


Output :

 
Example #2: Use product() function to find the product of any axis in the dataframe. The dataframe contains NaN values.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the first dataframe 
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
                   "B":[3, None, 4, 3, 4], 
                   "C":[2, 2, 7, None, 4],
                   "D":[None, 3, 6, 12, 7]})
  
# using prod() function to raise each element
# in df1 to the power of corresponding element in df2
df.product(axis = 1, skipna = True)

chevron_right


Output :



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.