Skip to content
Related Articles

Related Articles

Python | Pandas dataframe.notnull()

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 25 Aug, 2021

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.notnull() function detects existing/ non-missing values in the dataframe. The function returns a boolean object having the same size as that of the object on which it is applied, indicating whether each individual value is a na value or not. All of the non-missing values gets mapped to true and missing values get mapped to false. 
Note : Characters such as empty strings ” or numpy.inf are not considered NA values. (unless you set pandas.options.mode.use_inf_as_na = True).
 

Syntax: DataFrame.notnull()
Returns : Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
 

Example #1: Use notnull() function to find all the non-missing value in the dataframe.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df = pd.DataFrame({"A":[14, 4, 5, 4, 1],
                   "B":["Sam", "olivia", "terica", "megan", "amanda"],
                   "C":[20 + 5j, 20 + 3j, 7, 3, 8],
                   "D":[14, 3, 6, 2, 6]})
 
# Print the dataframe
df

Let’s use the dataframe.notnull() function to find all the non-missing values in the dataframe. 
 

Python3




# find non-na values
df.notnull()

Output : 
 

As we can see in the output, all the non-missing values in the dataframe has been mapped to true. There is no false value as there is no missing value in the dataframe 
 
Example #2: Use notnull() function to find the non-missing values, when there are missing values in the dataframe.
 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the dataframe
df = pd.DataFrame({"A":["Sandy", "alex", "brook", "kelly", np.nan],
                   "B":[np.nan, "olivia", "terica", "", "amanda"],
                   "C":[20 + 5j, 20 + 3j, 7, None, 8],
                    "D":[14.8, 3, None, 2.3, 6]})
 
# find non-missing values
df.notnull()

Output : 
 

Notice, the empty string also got mapped to true indicating that it is not a NaN value. 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!