Skip to content
Related Articles

Related Articles

Improve Article
Python | Pandas DataFrame.ix[ ]
  • Last Updated : 28 Dec, 2018

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas DataFrame.ix[ ] is both Label and Integer based slicing technique. Besides pure label based and integer based, Pandas provides a hybrid method for selections and subsetting the object using the ix[] operator. ix[] is the most general indexer and will support any of the inputs in loc[] and iloc[].

Syntax: DataFrame.ix[ ]

Parameters:
Index Position: Index position of rows in integer or list of integer.
Index label: String or list of string of index label of rows

Returns: Data frame or Series depending on parameters



Code #1:




# importing pandas package 
import pandas as geek
    
# making data frame from csv file
    
# Integer slicing
print("Slicing only rows(till index 4):")
x1 = data.ix[:4, ]
print(x1, "\n")
   
print("Slicing rows and columns(rows=4, col 1-4, excluding 4):")
x2 = data.ix[:4, 1:4]
print(x2)

Output :


 
Code #2:




# importing pandas package 
import pandas as geek
    
# making data frame from csv file
data = geek.read_csv("nba.csv")  
    
# Index slicing on Height column
print("After index slicing:")
x1 = data.ix[10:20, 'Height']
print(x1, "\n")
  
# Index slicing on Salary column
x2 = data.ix[10:20, 'Salary']
print(x2)

Output:

 

Code #3:




# importing pandas and numpy
import pandas as pd
import numpy as np
   
df = pd.DataFrame(np.random.randn(10, 4),
          columns = ['A', 'B', 'C', 'D'])
  
print("Original DataFrame: \n" , df)
   
# Integer slicing
print("\n Slicing only rows:")
print("--------------------------")
x1 = df.ix[:4, ]
print(x1)
   
print("\n Slicing rows and columns:")
print("----------------------------")
x2 = df.ix[:4, 1:3]
print(x2)

Output :

 
Code #4:




# importing pandas and numpy
import pandas as pd
import numpy as np
   
df = pd.DataFrame(np.random.randn(10, 4),
          columns = ['A', 'B', 'C', 'D'])
  
print("Original DataFrame: \n" , df)
   
# Integer slicing (printing all the rows of column 'A')
print("\n After index slicing (On 'A'):")
print("--------------------------")
x = df.ix[:, 'A']
  
print(x)

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :